Quantifying uncertainty in fatigue crack growth of SLM 316L through advanced predictive modeling
Optimizing structural designs is crucial today, with additive manufacturing, particularly selective laser melting, gaining prominence. Thorough mechanical characterization of new materials remains vital. This paper investigates fatigue crack growth behavior in SLM 316L specimens under cyclic loading...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 2024-09, Vol.47 (9), p.3116-3132 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3132 |
---|---|
container_issue | 9 |
container_start_page | 3116 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 47 |
creator | Haselibozchaloee, Danial Correia, José A. F. O. Braga, Daniel F. O. Cipriano, Gonçalo Reis, Luis Manuel, Lance Moreira, Pedro M. G. P. |
description | Optimizing structural designs is crucial today, with additive manufacturing, particularly selective laser melting, gaining prominence. Thorough mechanical characterization of new materials remains vital. This paper investigates fatigue crack growth behavior in SLM 316L specimens under cyclic loading conditions. The study addresses result uncertainties by using CT specimens aligned along three building directions per ASTM E647 standards and a constant loading ratio (R = 0.1), necessitating mean value and confidence interval predictions. Departing from linear prediction models, innovative Bootstrap Polynomial and Power Regression Models and Bayesian Nonlinear Regression Model updated posterior distribution by Markov Chain Monte Carlo are employed. These approaches leverage bootstrapping to construct confidence intervals, offering robustness and flexibility in handling non‐normal data behavior and limited sample sizes. They provide tailored fits to data curvature, revealing limitations of linear prediction models in capturing observed nonlinear behavior, enhancing reliability in additive manufacturing applications, and advancing material science and engineering.
Highlights
Fatigue crack growth in SLM316L is evaluated.
Robust nonlinear regression techniques are utilized.
Distribution approximation is done using Kernel estimator.
Confidence intervals are estimated employing Bootstrap and Bayesian regression models. |
doi_str_mv | 10.1111/ffe.14361 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3087740465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087740465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1871-8cc21feaa382495c112a4d7622d3951245477b85ce0e0a8fa96d4ad540f0ac53</originalsourceid><addsrcrecordid>eNp1kL1OwzAYRS0EEqUw8AaWmBjS2vFvRlRRQCpCiA5sxvgndWmT4jit8vakhJVvucu595MOANcYTXB_U-_dBFPC8QkYYcpRlvOCnYKRFIxngsn3c3DRNGuEMKeEjMDHa6urFHwXqhK2lXEx6VClDoYKep1C2TpoojZfsIz1Ia1g7eHb4hkSzBcwrWLdliuo7V73VQt30dlgUtg7uK2t2_Sjl-DM603jrv5yDJbz--XsMVu8PDzN7haZwVLgTBqTY--0JjKnBTMY55pawfPckoLhnDIqxKdkxiGHtPS64JZqyyjySBtGxuBmmN3F-rt1TVLruo1V_1ERJIWgiPIjdTtQJtZNE51Xuxi2OnYKI3X0p3p_6tdfz04H9hA2rvsfVPP5_dD4AbgTcVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087740465</pqid></control><display><type>article</type><title>Quantifying uncertainty in fatigue crack growth of SLM 316L through advanced predictive modeling</title><source>Wiley Journals</source><creator>Haselibozchaloee, Danial ; Correia, José A. F. O. ; Braga, Daniel F. O. ; Cipriano, Gonçalo ; Reis, Luis ; Manuel, Lance ; Moreira, Pedro M. G. P.</creator><creatorcontrib>Haselibozchaloee, Danial ; Correia, José A. F. O. ; Braga, Daniel F. O. ; Cipriano, Gonçalo ; Reis, Luis ; Manuel, Lance ; Moreira, Pedro M. G. P.</creatorcontrib><description>Optimizing structural designs is crucial today, with additive manufacturing, particularly selective laser melting, gaining prominence. Thorough mechanical characterization of new materials remains vital. This paper investigates fatigue crack growth behavior in SLM 316L specimens under cyclic loading conditions. The study addresses result uncertainties by using CT specimens aligned along three building directions per ASTM E647 standards and a constant loading ratio (R = 0.1), necessitating mean value and confidence interval predictions. Departing from linear prediction models, innovative Bootstrap Polynomial and Power Regression Models and Bayesian Nonlinear Regression Model updated posterior distribution by Markov Chain Monte Carlo are employed. These approaches leverage bootstrapping to construct confidence intervals, offering robustness and flexibility in handling non‐normal data behavior and limited sample sizes. They provide tailored fits to data curvature, revealing limitations of linear prediction models in capturing observed nonlinear behavior, enhancing reliability in additive manufacturing applications, and advancing material science and engineering.
Highlights
Fatigue crack growth in SLM316L is evaluated.
Robust nonlinear regression techniques are utilized.
Distribution approximation is done using Kernel estimator.
Confidence intervals are estimated employing Bootstrap and Bayesian regression models.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.14361</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Additive manufacturing ; Bayes theorem ; Bayesian analysis ; bootstrap ; Confidence intervals ; Crack propagation ; Cyclic loads ; fatigue crack growth ; Fatigue cracks ; Fatigue failure ; Fracture mechanics ; Laser beam melting ; Linear prediction ; Manufacturing ; Markov chains ; Mechanical properties ; nonlinear regression ; Polynomials ; Prediction models ; Regression models ; selective melting manufacturing ; Statistical analysis ; Structural design ; Uncertainty</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2024-09, Vol.47 (9), p.3116-3132</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1871-8cc21feaa382495c112a4d7622d3951245477b85ce0e0a8fa96d4ad540f0ac53</cites><orcidid>0000-0002-0587-3041 ; 0000-0002-6256-5723 ; 0000-0001-9848-9569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.14361$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.14361$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Haselibozchaloee, Danial</creatorcontrib><creatorcontrib>Correia, José A. F. O.</creatorcontrib><creatorcontrib>Braga, Daniel F. O.</creatorcontrib><creatorcontrib>Cipriano, Gonçalo</creatorcontrib><creatorcontrib>Reis, Luis</creatorcontrib><creatorcontrib>Manuel, Lance</creatorcontrib><creatorcontrib>Moreira, Pedro M. G. P.</creatorcontrib><title>Quantifying uncertainty in fatigue crack growth of SLM 316L through advanced predictive modeling</title><title>Fatigue & fracture of engineering materials & structures</title><description>Optimizing structural designs is crucial today, with additive manufacturing, particularly selective laser melting, gaining prominence. Thorough mechanical characterization of new materials remains vital. This paper investigates fatigue crack growth behavior in SLM 316L specimens under cyclic loading conditions. The study addresses result uncertainties by using CT specimens aligned along three building directions per ASTM E647 standards and a constant loading ratio (R = 0.1), necessitating mean value and confidence interval predictions. Departing from linear prediction models, innovative Bootstrap Polynomial and Power Regression Models and Bayesian Nonlinear Regression Model updated posterior distribution by Markov Chain Monte Carlo are employed. These approaches leverage bootstrapping to construct confidence intervals, offering robustness and flexibility in handling non‐normal data behavior and limited sample sizes. They provide tailored fits to data curvature, revealing limitations of linear prediction models in capturing observed nonlinear behavior, enhancing reliability in additive manufacturing applications, and advancing material science and engineering.
Highlights
Fatigue crack growth in SLM316L is evaluated.
Robust nonlinear regression techniques are utilized.
Distribution approximation is done using Kernel estimator.
Confidence intervals are estimated employing Bootstrap and Bayesian regression models.</description><subject>Additive manufacturing</subject><subject>Bayes theorem</subject><subject>Bayesian analysis</subject><subject>bootstrap</subject><subject>Confidence intervals</subject><subject>Crack propagation</subject><subject>Cyclic loads</subject><subject>fatigue crack growth</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Laser beam melting</subject><subject>Linear prediction</subject><subject>Manufacturing</subject><subject>Markov chains</subject><subject>Mechanical properties</subject><subject>nonlinear regression</subject><subject>Polynomials</subject><subject>Prediction models</subject><subject>Regression models</subject><subject>selective melting manufacturing</subject><subject>Statistical analysis</subject><subject>Structural design</subject><subject>Uncertainty</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAYRS0EEqUw8AaWmBjS2vFvRlRRQCpCiA5sxvgndWmT4jit8vakhJVvucu595MOANcYTXB_U-_dBFPC8QkYYcpRlvOCnYKRFIxngsn3c3DRNGuEMKeEjMDHa6urFHwXqhK2lXEx6VClDoYKep1C2TpoojZfsIz1Ia1g7eHb4hkSzBcwrWLdliuo7V73VQt30dlgUtg7uK2t2_Sjl-DM603jrv5yDJbz--XsMVu8PDzN7haZwVLgTBqTY--0JjKnBTMY55pawfPckoLhnDIqxKdkxiGHtPS64JZqyyjySBtGxuBmmN3F-rt1TVLruo1V_1ERJIWgiPIjdTtQJtZNE51Xuxi2OnYKI3X0p3p_6tdfz04H9hA2rvsfVPP5_dD4AbgTcVw</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Haselibozchaloee, Danial</creator><creator>Correia, José A. F. O.</creator><creator>Braga, Daniel F. O.</creator><creator>Cipriano, Gonçalo</creator><creator>Reis, Luis</creator><creator>Manuel, Lance</creator><creator>Moreira, Pedro M. G. P.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-0587-3041</orcidid><orcidid>https://orcid.org/0000-0002-6256-5723</orcidid><orcidid>https://orcid.org/0000-0001-9848-9569</orcidid></search><sort><creationdate>202409</creationdate><title>Quantifying uncertainty in fatigue crack growth of SLM 316L through advanced predictive modeling</title><author>Haselibozchaloee, Danial ; Correia, José A. F. O. ; Braga, Daniel F. O. ; Cipriano, Gonçalo ; Reis, Luis ; Manuel, Lance ; Moreira, Pedro M. G. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1871-8cc21feaa382495c112a4d7622d3951245477b85ce0e0a8fa96d4ad540f0ac53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Additive manufacturing</topic><topic>Bayes theorem</topic><topic>Bayesian analysis</topic><topic>bootstrap</topic><topic>Confidence intervals</topic><topic>Crack propagation</topic><topic>Cyclic loads</topic><topic>fatigue crack growth</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Laser beam melting</topic><topic>Linear prediction</topic><topic>Manufacturing</topic><topic>Markov chains</topic><topic>Mechanical properties</topic><topic>nonlinear regression</topic><topic>Polynomials</topic><topic>Prediction models</topic><topic>Regression models</topic><topic>selective melting manufacturing</topic><topic>Statistical analysis</topic><topic>Structural design</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haselibozchaloee, Danial</creatorcontrib><creatorcontrib>Correia, José A. F. O.</creatorcontrib><creatorcontrib>Braga, Daniel F. O.</creatorcontrib><creatorcontrib>Cipriano, Gonçalo</creatorcontrib><creatorcontrib>Reis, Luis</creatorcontrib><creatorcontrib>Manuel, Lance</creatorcontrib><creatorcontrib>Moreira, Pedro M. G. P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haselibozchaloee, Danial</au><au>Correia, José A. F. O.</au><au>Braga, Daniel F. O.</au><au>Cipriano, Gonçalo</au><au>Reis, Luis</au><au>Manuel, Lance</au><au>Moreira, Pedro M. G. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying uncertainty in fatigue crack growth of SLM 316L through advanced predictive modeling</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>2024-09</date><risdate>2024</risdate><volume>47</volume><issue>9</issue><spage>3116</spage><epage>3132</epage><pages>3116-3132</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>Optimizing structural designs is crucial today, with additive manufacturing, particularly selective laser melting, gaining prominence. Thorough mechanical characterization of new materials remains vital. This paper investigates fatigue crack growth behavior in SLM 316L specimens under cyclic loading conditions. The study addresses result uncertainties by using CT specimens aligned along three building directions per ASTM E647 standards and a constant loading ratio (R = 0.1), necessitating mean value and confidence interval predictions. Departing from linear prediction models, innovative Bootstrap Polynomial and Power Regression Models and Bayesian Nonlinear Regression Model updated posterior distribution by Markov Chain Monte Carlo are employed. These approaches leverage bootstrapping to construct confidence intervals, offering robustness and flexibility in handling non‐normal data behavior and limited sample sizes. They provide tailored fits to data curvature, revealing limitations of linear prediction models in capturing observed nonlinear behavior, enhancing reliability in additive manufacturing applications, and advancing material science and engineering.
Highlights
Fatigue crack growth in SLM316L is evaluated.
Robust nonlinear regression techniques are utilized.
Distribution approximation is done using Kernel estimator.
Confidence intervals are estimated employing Bootstrap and Bayesian regression models.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.14361</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0587-3041</orcidid><orcidid>https://orcid.org/0000-0002-6256-5723</orcidid><orcidid>https://orcid.org/0000-0001-9848-9569</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2024-09, Vol.47 (9), p.3116-3132 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_journals_3087740465 |
source | Wiley Journals |
subjects | Additive manufacturing Bayes theorem Bayesian analysis bootstrap Confidence intervals Crack propagation Cyclic loads fatigue crack growth Fatigue cracks Fatigue failure Fracture mechanics Laser beam melting Linear prediction Manufacturing Markov chains Mechanical properties nonlinear regression Polynomials Prediction models Regression models selective melting manufacturing Statistical analysis Structural design Uncertainty |
title | Quantifying uncertainty in fatigue crack growth of SLM 316L through advanced predictive modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20uncertainty%20in%20fatigue%20crack%20growth%20of%20SLM%20316L%20through%20advanced%20predictive%20modeling&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Haselibozchaloee,%20Danial&rft.date=2024-09&rft.volume=47&rft.issue=9&rft.spage=3116&rft.epage=3132&rft.pages=3116-3132&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.14361&rft_dat=%3Cproquest_cross%3E3087740465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087740465&rft_id=info:pmid/&rfr_iscdi=true |