Manifold-Based Optimizations for RIS-Aided Massive MIMO Systems
Manifold optimization (MO) is a powerful mathematical framework that can be applied to optimize functions over complex geometric structures, which is particularly useful in advanced wireless communication systems, such as reconfigurable intelligent surface (RIS)-aided massive MIMO (mMIMO) and extra-...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | de Souza Junior, Wilson Marques Guerra, David William Marinello, José Carlos Abrão, Taufik Hossain, Ekram |
description | Manifold optimization (MO) is a powerful mathematical framework that can be applied to optimize functions over complex geometric structures, which is particularly useful in advanced wireless communication systems, such as reconfigurable intelligent surface (RIS)-aided massive MIMO (mMIMO) and extra-large scale massive MIMO (XL-MIMO) systems. MO provides a structured approach to tackling complex optimization problems. By leveraging the geometric properties of the manifold, more efficient and effective solutions can be found compared to conventional optimization methods. This paper provides a tutorial on MO technique and provides some applications of MO in the context of wireless communications systems. In particular, to corroborate the effectiveness of MO methodology, we explore five application examples in RIS-aided mMIMO system, focusing on fairness, energy efficiency (EE) maximization, intracell pilot reuse interference mitigation, and grant-free (GF) random access (RA). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3087447876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087447876</sourcerecordid><originalsourceid>FETCH-proquest_journals_30874478763</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw903My0zLz0nRdUosTk1R8C8oyczNrEosyczPK1ZIyy9SCPIM1nXMTAHK-SYWF2eWpSr4evr6KwRXFpek5hbzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8sYGFuYmJuYW5mTFxqgCSsjfb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087447876</pqid></control><display><type>article</type><title>Manifold-Based Optimizations for RIS-Aided Massive MIMO Systems</title><source>Freely Accessible Journals</source><creator>de Souza Junior, Wilson ; Marques Guerra, David William ; Marinello, José Carlos ; Abrão, Taufik ; Hossain, Ekram</creator><creatorcontrib>de Souza Junior, Wilson ; Marques Guerra, David William ; Marinello, José Carlos ; Abrão, Taufik ; Hossain, Ekram</creatorcontrib><description>Manifold optimization (MO) is a powerful mathematical framework that can be applied to optimize functions over complex geometric structures, which is particularly useful in advanced wireless communication systems, such as reconfigurable intelligent surface (RIS)-aided massive MIMO (mMIMO) and extra-large scale massive MIMO (XL-MIMO) systems. MO provides a structured approach to tackling complex optimization problems. By leveraging the geometric properties of the manifold, more efficient and effective solutions can be found compared to conventional optimization methods. This paper provides a tutorial on MO technique and provides some applications of MO in the context of wireless communications systems. In particular, to corroborate the effectiveness of MO methodology, we explore five application examples in RIS-aided mMIMO system, focusing on fairness, energy efficiency (EE) maximization, intracell pilot reuse interference mitigation, and grant-free (GF) random access (RA).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Functions (mathematics) ; Manifolds (mathematics) ; MIMO communication ; Optimization ; Random access ; Reconfigurable intelligent surfaces ; System effectiveness ; Wireless communication systems</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>de Souza Junior, Wilson</creatorcontrib><creatorcontrib>Marques Guerra, David William</creatorcontrib><creatorcontrib>Marinello, José Carlos</creatorcontrib><creatorcontrib>Abrão, Taufik</creatorcontrib><creatorcontrib>Hossain, Ekram</creatorcontrib><title>Manifold-Based Optimizations for RIS-Aided Massive MIMO Systems</title><title>arXiv.org</title><description>Manifold optimization (MO) is a powerful mathematical framework that can be applied to optimize functions over complex geometric structures, which is particularly useful in advanced wireless communication systems, such as reconfigurable intelligent surface (RIS)-aided massive MIMO (mMIMO) and extra-large scale massive MIMO (XL-MIMO) systems. MO provides a structured approach to tackling complex optimization problems. By leveraging the geometric properties of the manifold, more efficient and effective solutions can be found compared to conventional optimization methods. This paper provides a tutorial on MO technique and provides some applications of MO in the context of wireless communications systems. In particular, to corroborate the effectiveness of MO methodology, we explore five application examples in RIS-aided mMIMO system, focusing on fairness, energy efficiency (EE) maximization, intracell pilot reuse interference mitigation, and grant-free (GF) random access (RA).</description><subject>Functions (mathematics)</subject><subject>Manifolds (mathematics)</subject><subject>MIMO communication</subject><subject>Optimization</subject><subject>Random access</subject><subject>Reconfigurable intelligent surfaces</subject><subject>System effectiveness</subject><subject>Wireless communication systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw903My0zLz0nRdUosTk1R8C8oyczNrEosyczPK1ZIyy9SCPIM1nXMTAHK-SYWF2eWpSr4evr6KwRXFpek5hbzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8sYGFuYmJuYW5mTFxqgCSsjfb</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>de Souza Junior, Wilson</creator><creator>Marques Guerra, David William</creator><creator>Marinello, José Carlos</creator><creator>Abrão, Taufik</creator><creator>Hossain, Ekram</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240801</creationdate><title>Manifold-Based Optimizations for RIS-Aided Massive MIMO Systems</title><author>de Souza Junior, Wilson ; Marques Guerra, David William ; Marinello, José Carlos ; Abrão, Taufik ; Hossain, Ekram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30874478763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Functions (mathematics)</topic><topic>Manifolds (mathematics)</topic><topic>MIMO communication</topic><topic>Optimization</topic><topic>Random access</topic><topic>Reconfigurable intelligent surfaces</topic><topic>System effectiveness</topic><topic>Wireless communication systems</topic><toplevel>online_resources</toplevel><creatorcontrib>de Souza Junior, Wilson</creatorcontrib><creatorcontrib>Marques Guerra, David William</creatorcontrib><creatorcontrib>Marinello, José Carlos</creatorcontrib><creatorcontrib>Abrão, Taufik</creatorcontrib><creatorcontrib>Hossain, Ekram</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Souza Junior, Wilson</au><au>Marques Guerra, David William</au><au>Marinello, José Carlos</au><au>Abrão, Taufik</au><au>Hossain, Ekram</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Manifold-Based Optimizations for RIS-Aided Massive MIMO Systems</atitle><jtitle>arXiv.org</jtitle><date>2024-08-01</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Manifold optimization (MO) is a powerful mathematical framework that can be applied to optimize functions over complex geometric structures, which is particularly useful in advanced wireless communication systems, such as reconfigurable intelligent surface (RIS)-aided massive MIMO (mMIMO) and extra-large scale massive MIMO (XL-MIMO) systems. MO provides a structured approach to tackling complex optimization problems. By leveraging the geometric properties of the manifold, more efficient and effective solutions can be found compared to conventional optimization methods. This paper provides a tutorial on MO technique and provides some applications of MO in the context of wireless communications systems. In particular, to corroborate the effectiveness of MO methodology, we explore five application examples in RIS-aided mMIMO system, focusing on fairness, energy efficiency (EE) maximization, intracell pilot reuse interference mitigation, and grant-free (GF) random access (RA).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3087447876 |
source | Freely Accessible Journals |
subjects | Functions (mathematics) Manifolds (mathematics) MIMO communication Optimization Random access Reconfigurable intelligent surfaces System effectiveness Wireless communication systems |
title | Manifold-Based Optimizations for RIS-Aided Massive MIMO Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Manifold-Based%20Optimizations%20for%20RIS-Aided%20Massive%20MIMO%20Systems&rft.jtitle=arXiv.org&rft.au=de%20Souza%20Junior,%20Wilson&rft.date=2024-08-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3087447876%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087447876&rft_id=info:pmid/&rfr_iscdi=true |