On Space-like Class \(\mathcal A\) Surfaces in Robertson-Walker Space Times
In this article, we consider space-like surfaces in Robertson-Walker Space times \(L^4_1(f,c)\) with comoving observer field \(\frac{\partial}{\partial t}\). We study some problems related to such surfaces satisfying the geometric conditions imposed on the tangential part and normal part of the unit...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Demirci, Burcu Bektaş Turgay, Nurettin Cenk Rüya Yeğin \c{S}en |
description | In this article, we consider space-like surfaces in Robertson-Walker Space times \(L^4_1(f,c)\) with comoving observer field \(\frac{\partial}{\partial t}\). We study some problems related to such surfaces satisfying the geometric conditions imposed on the tangential part and normal part of the unit vector field \(\frac{\partial}{\partial t}\) naturally defined. First, we investigate space-like surfaces in \(L^4_1(f,c)\) satisfying that the tangent component of \(\frac{\partial}{\partial t}\) is an eigenvector of all shape operators, called class \(\mathcal A\) surfaces. Then, we get a classification theorem of space-like class \(\mathcal A\) surfaces in \(L^4_1(f,0)\). Also, we examine minimal space-like class \(\mathcal A\) surfaces in \(L^4_1(f,0)\). Finally, we give the parametrizations of space-like surfaces in \(L^4_1(f,0)\) when the normal part of the unit vector field \(\frac{\partial}{\partial t}\) is parallel. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3087447792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087447792</sourcerecordid><originalsourceid>FETCH-proquest_journals_30874477923</originalsourceid><addsrcrecordid>eNqNi0ELgjAYQEcQJOV_-KBLHQa2abNjSBF0CFLoIsiSSercbJ_-_4T6AZ3e4b03Ix7jfEfjkLEF8RGbIAjYXrAo4h653gykvSwV1XWrINESEfJN3snhVUoNx3wL6eiqqUCoDdztU7kBraEPqVvlvjNkdadwReaV1Kj8H5dkfT5lyYX2zr5HhUPR2NGZSRU8iEUYCnFg_L_qAyxdO5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087447792</pqid></control><display><type>article</type><title>On Space-like Class \(\mathcal A\) Surfaces in Robertson-Walker Space Times</title><source>Free E- Journals</source><creator>Demirci, Burcu Bektaş ; Turgay, Nurettin Cenk ; Rüya Yeğin \c{S}en</creator><creatorcontrib>Demirci, Burcu Bektaş ; Turgay, Nurettin Cenk ; Rüya Yeğin \c{S}en</creatorcontrib><description>In this article, we consider space-like surfaces in Robertson-Walker Space times \(L^4_1(f,c)\) with comoving observer field \(\frac{\partial}{\partial t}\). We study some problems related to such surfaces satisfying the geometric conditions imposed on the tangential part and normal part of the unit vector field \(\frac{\partial}{\partial t}\) naturally defined. First, we investigate space-like surfaces in \(L^4_1(f,c)\) satisfying that the tangent component of \(\frac{\partial}{\partial t}\) is an eigenvector of all shape operators, called class \(\mathcal A\) surfaces. Then, we get a classification theorem of space-like class \(\mathcal A\) surfaces in \(L^4_1(f,0)\). Also, we examine minimal space-like class \(\mathcal A\) surfaces in \(L^4_1(f,0)\). Finally, we give the parametrizations of space-like surfaces in \(L^4_1(f,0)\) when the normal part of the unit vector field \(\frac{\partial}{\partial t}\) is parallel.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Eigenvectors ; Fields (mathematics)</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Demirci, Burcu Bektaş</creatorcontrib><creatorcontrib>Turgay, Nurettin Cenk</creatorcontrib><creatorcontrib>Rüya Yeğin \c{S}en</creatorcontrib><title>On Space-like Class \(\mathcal A\) Surfaces in Robertson-Walker Space Times</title><title>arXiv.org</title><description>In this article, we consider space-like surfaces in Robertson-Walker Space times \(L^4_1(f,c)\) with comoving observer field \(\frac{\partial}{\partial t}\). We study some problems related to such surfaces satisfying the geometric conditions imposed on the tangential part and normal part of the unit vector field \(\frac{\partial}{\partial t}\) naturally defined. First, we investigate space-like surfaces in \(L^4_1(f,c)\) satisfying that the tangent component of \(\frac{\partial}{\partial t}\) is an eigenvector of all shape operators, called class \(\mathcal A\) surfaces. Then, we get a classification theorem of space-like class \(\mathcal A\) surfaces in \(L^4_1(f,0)\). Also, we examine minimal space-like class \(\mathcal A\) surfaces in \(L^4_1(f,0)\). Finally, we give the parametrizations of space-like surfaces in \(L^4_1(f,0)\) when the normal part of the unit vector field \(\frac{\partial}{\partial t}\) is parallel.</description><subject>Eigenvectors</subject><subject>Fields (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi0ELgjAYQEcQJOV_-KBLHQa2abNjSBF0CFLoIsiSSercbJ_-_4T6AZ3e4b03Ix7jfEfjkLEF8RGbIAjYXrAo4h653gykvSwV1XWrINESEfJN3snhVUoNx3wL6eiqqUCoDdztU7kBraEPqVvlvjNkdadwReaV1Kj8H5dkfT5lyYX2zr5HhUPR2NGZSRU8iEUYCnFg_L_qAyxdO5k</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Demirci, Burcu Bektaş</creator><creator>Turgay, Nurettin Cenk</creator><creator>Rüya Yeğin \c{S}en</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240801</creationdate><title>On Space-like Class \(\mathcal A\) Surfaces in Robertson-Walker Space Times</title><author>Demirci, Burcu Bektaş ; Turgay, Nurettin Cenk ; Rüya Yeğin \c{S}en</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30874477923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Eigenvectors</topic><topic>Fields (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Demirci, Burcu Bektaş</creatorcontrib><creatorcontrib>Turgay, Nurettin Cenk</creatorcontrib><creatorcontrib>Rüya Yeğin \c{S}en</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demirci, Burcu Bektaş</au><au>Turgay, Nurettin Cenk</au><au>Rüya Yeğin \c{S}en</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On Space-like Class \(\mathcal A\) Surfaces in Robertson-Walker Space Times</atitle><jtitle>arXiv.org</jtitle><date>2024-08-01</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this article, we consider space-like surfaces in Robertson-Walker Space times \(L^4_1(f,c)\) with comoving observer field \(\frac{\partial}{\partial t}\). We study some problems related to such surfaces satisfying the geometric conditions imposed on the tangential part and normal part of the unit vector field \(\frac{\partial}{\partial t}\) naturally defined. First, we investigate space-like surfaces in \(L^4_1(f,c)\) satisfying that the tangent component of \(\frac{\partial}{\partial t}\) is an eigenvector of all shape operators, called class \(\mathcal A\) surfaces. Then, we get a classification theorem of space-like class \(\mathcal A\) surfaces in \(L^4_1(f,0)\). Also, we examine minimal space-like class \(\mathcal A\) surfaces in \(L^4_1(f,0)\). Finally, we give the parametrizations of space-like surfaces in \(L^4_1(f,0)\) when the normal part of the unit vector field \(\frac{\partial}{\partial t}\) is parallel.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3087447792 |
source | Free E- Journals |
subjects | Eigenvectors Fields (mathematics) |
title | On Space-like Class \(\mathcal A\) Surfaces in Robertson-Walker Space Times |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20Space-like%20Class%20%5C(%5Cmathcal%20A%5C)%20Surfaces%20in%20Robertson-Walker%20Space%20Times&rft.jtitle=arXiv.org&rft.au=Demirci,%20Burcu%20Bekta%C5%9F&rft.date=2024-08-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3087447792%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087447792&rft_id=info:pmid/&rfr_iscdi=true |