Persistent Topological Negativity in a High-Temperature Mixed-State

We study the entanglement structure of the Greenberger-Horne-Zeilinger (GHZ) state as it thermalizes under a strongly-symmetric quantum channel describing the Metropolis-Hastings dynamics for the \(d\)-dimensional classical Ising model at inverse temperature \(\beta\). This channel outputs the class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Kim, Yonna, Lavasani, Ali, Sagar Vijay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kim, Yonna
Lavasani, Ali
Sagar Vijay
description We study the entanglement structure of the Greenberger-Horne-Zeilinger (GHZ) state as it thermalizes under a strongly-symmetric quantum channel describing the Metropolis-Hastings dynamics for the \(d\)-dimensional classical Ising model at inverse temperature \(\beta\). This channel outputs the classical Gibbs state when acting on a product state in the computational basis. When applying this channel to a GHZ state in spatial dimension \(d>1\), the resulting mixed state changes character at the Ising phase transition temperature from being long-range entangled to short-range-entangled as temperature increases. Nevertheless, we show that the topological entanglement negativity of a large region is insensitive to this transition and takes the same value as that of the pure GHZ state at any finite temperature \(\beta>0\). We establish this result by devising a local operations and classical communication (LOCC) ``decoder" that provides matching lower and upper bounds on the negativity in the thermodynamic limit which may be of independent interest. This perspective connects the negativity to an error-correction problem on the \((d-1)\)-dimensional bipartitioning surface and explains the persistent negativity in certain correlated noise models found in previous studies. Numerical results confirm our analysis.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3087447424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087447424</sourcerecordid><originalsourceid>FETCH-proquest_journals_30874474243</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScAzFJbfeidFEEu5dQn_WV2sTkVfTvdfADnO5w7owlSuuNKIxSC5bG2Esp1TZXWaYTVp4gRIwEI_HaeTe4Dls78CN0lvCJ9OY4cssr7G6ihruHYGkKwA_4gos4kyVYsfnVDhHSX5dsvd_VZSV8cI8JIjW9m8L4pUbLIjcmN8ro_64PFKM6SA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087447424</pqid></control><display><type>article</type><title>Persistent Topological Negativity in a High-Temperature Mixed-State</title><source>Free E- Journals</source><creator>Kim, Yonna ; Lavasani, Ali ; Sagar Vijay</creator><creatorcontrib>Kim, Yonna ; Lavasani, Ali ; Sagar Vijay</creatorcontrib><description>We study the entanglement structure of the Greenberger-Horne-Zeilinger (GHZ) state as it thermalizes under a strongly-symmetric quantum channel describing the Metropolis-Hastings dynamics for the \(d\)-dimensional classical Ising model at inverse temperature \(\beta\). This channel outputs the classical Gibbs state when acting on a product state in the computational basis. When applying this channel to a GHZ state in spatial dimension \(d&gt;1\), the resulting mixed state changes character at the Ising phase transition temperature from being long-range entangled to short-range-entangled as temperature increases. Nevertheless, we show that the topological entanglement negativity of a large region is insensitive to this transition and takes the same value as that of the pure GHZ state at any finite temperature \(\beta&gt;0\). We establish this result by devising a local operations and classical communication (LOCC) ``decoder" that provides matching lower and upper bounds on the negativity in the thermodynamic limit which may be of independent interest. This perspective connects the negativity to an error-correction problem on the \((d-1)\)-dimensional bipartitioning surface and explains the persistent negativity in certain correlated noise models found in previous studies. Numerical results confirm our analysis.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dimensional analysis ; Dynamic structural analysis ; Entangled states ; Error analysis ; Error correction ; High temperature ; Ising model ; Phase transitions ; Topology ; Transition temperature ; Upper bounds</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kim, Yonna</creatorcontrib><creatorcontrib>Lavasani, Ali</creatorcontrib><creatorcontrib>Sagar Vijay</creatorcontrib><title>Persistent Topological Negativity in a High-Temperature Mixed-State</title><title>arXiv.org</title><description>We study the entanglement structure of the Greenberger-Horne-Zeilinger (GHZ) state as it thermalizes under a strongly-symmetric quantum channel describing the Metropolis-Hastings dynamics for the \(d\)-dimensional classical Ising model at inverse temperature \(\beta\). This channel outputs the classical Gibbs state when acting on a product state in the computational basis. When applying this channel to a GHZ state in spatial dimension \(d&gt;1\), the resulting mixed state changes character at the Ising phase transition temperature from being long-range entangled to short-range-entangled as temperature increases. Nevertheless, we show that the topological entanglement negativity of a large region is insensitive to this transition and takes the same value as that of the pure GHZ state at any finite temperature \(\beta&gt;0\). We establish this result by devising a local operations and classical communication (LOCC) ``decoder" that provides matching lower and upper bounds on the negativity in the thermodynamic limit which may be of independent interest. This perspective connects the negativity to an error-correction problem on the \((d-1)\)-dimensional bipartitioning surface and explains the persistent negativity in certain correlated noise models found in previous studies. Numerical results confirm our analysis.</description><subject>Dimensional analysis</subject><subject>Dynamic structural analysis</subject><subject>Entangled states</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>High temperature</subject><subject>Ising model</subject><subject>Phase transitions</subject><subject>Topology</subject><subject>Transition temperature</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScAzFJbfeidFEEu5dQn_WV2sTkVfTvdfADnO5w7owlSuuNKIxSC5bG2Esp1TZXWaYTVp4gRIwEI_HaeTe4Dls78CN0lvCJ9OY4cssr7G6ihruHYGkKwA_4gos4kyVYsfnVDhHSX5dsvd_VZSV8cI8JIjW9m8L4pUbLIjcmN8ro_64PFKM6SA</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>Kim, Yonna</creator><creator>Lavasani, Ali</creator><creator>Sagar Vijay</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240731</creationdate><title>Persistent Topological Negativity in a High-Temperature Mixed-State</title><author>Kim, Yonna ; Lavasani, Ali ; Sagar Vijay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30874474243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dimensional analysis</topic><topic>Dynamic structural analysis</topic><topic>Entangled states</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>High temperature</topic><topic>Ising model</topic><topic>Phase transitions</topic><topic>Topology</topic><topic>Transition temperature</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yonna</creatorcontrib><creatorcontrib>Lavasani, Ali</creatorcontrib><creatorcontrib>Sagar Vijay</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yonna</au><au>Lavasani, Ali</au><au>Sagar Vijay</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Persistent Topological Negativity in a High-Temperature Mixed-State</atitle><jtitle>arXiv.org</jtitle><date>2024-07-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study the entanglement structure of the Greenberger-Horne-Zeilinger (GHZ) state as it thermalizes under a strongly-symmetric quantum channel describing the Metropolis-Hastings dynamics for the \(d\)-dimensional classical Ising model at inverse temperature \(\beta\). This channel outputs the classical Gibbs state when acting on a product state in the computational basis. When applying this channel to a GHZ state in spatial dimension \(d&gt;1\), the resulting mixed state changes character at the Ising phase transition temperature from being long-range entangled to short-range-entangled as temperature increases. Nevertheless, we show that the topological entanglement negativity of a large region is insensitive to this transition and takes the same value as that of the pure GHZ state at any finite temperature \(\beta&gt;0\). We establish this result by devising a local operations and classical communication (LOCC) ``decoder" that provides matching lower and upper bounds on the negativity in the thermodynamic limit which may be of independent interest. This perspective connects the negativity to an error-correction problem on the \((d-1)\)-dimensional bipartitioning surface and explains the persistent negativity in certain correlated noise models found in previous studies. Numerical results confirm our analysis.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3087447424
source Free E- Journals
subjects Dimensional analysis
Dynamic structural analysis
Entangled states
Error analysis
Error correction
High temperature
Ising model
Phase transitions
Topology
Transition temperature
Upper bounds
title Persistent Topological Negativity in a High-Temperature Mixed-State
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Persistent%20Topological%20Negativity%20in%20a%20High-Temperature%20Mixed-State&rft.jtitle=arXiv.org&rft.au=Kim,%20Yonna&rft.date=2024-07-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3087447424%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087447424&rft_id=info:pmid/&rfr_iscdi=true