A review on machine learning in agricultural sciences

Machine learning has combined with technologies such as big data and high-performance computers to create new opportunities for data-intensive investigations, among numerous other applications in the field of agri-technology. In this study, we give a thorough assessment of studies on the uses of mac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rayalu, G. Mokesh, Farouq, Kamal Murtala, Kolli, Chandra Sekhar, Torres-Cruz, Fred, Herrera, Alain Paul, Muhammad, Rabia Sabo
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2937
creator Rayalu, G. Mokesh
Farouq, Kamal Murtala
Kolli, Chandra Sekhar
Torres-Cruz, Fred
Herrera, Alain Paul
Muhammad, Rabia Sabo
description Machine learning has combined with technologies such as big data and high-performance computers to create new opportunities for data-intensive investigations, among numerous other applications in the field of agri-technology. In this study, we give a thorough assessment of studies on the uses of machine learning in farming systems, with particular emphasis on the United States. Crop organisation, which included applications on yield estimation, disease monitoring, weed detection, plant health, and with so; cattle leadership, which included implementations on animal conservation and cattle ranching; irrigation; and soil conservation were the categories in which the efforts were analysed. The filtering and categorization of the articles offered here indicate how machine learning algorithms will be beneficial to the agricultural industry. Systems for farming operations are evolving into legitimate AI-enabled programs that offer thorough recommendations and findings for farmer strategic development and execution. By using data mining techniques on sensor data, this is made possible. Among the terms that come to mind include agricultural administration, conservation techniques, application of fertilizers, animal care, time management, and crop monitoring.
doi_str_mv 10.1063/5.0218219
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3087405299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087405299</sourcerecordid><originalsourceid>FETCH-LOGICAL-p639-ea837a927e3cb1f1b15a8cd2639f75857d99fbbadb929a3ca2d0b506e0c555ce3</originalsourceid><addsrcrecordid>eNotkDFPwzAUhC0EEqUw8A8ssSGlPNt5cTxWFRSkSiwd2KwXxymuUqc4CYh_T1A73XCf7k7H2L2AhYBCPeECpCilMBdsJhBFpgtRXLIZgMkzmauPa3bT93sAabQuZwyXPPnv4H94F_mB3GeInreeUgxxx0PktEvBje0wJmp574KPzve37Kqhtvd3Z52z7cvzdvWabd7Xb6vlJjsWymSeSqXJSO2Vq0QjKoFUulpOXqOxRF0b01QV1ZWRhpQjWUOFUHhwiOi8mrOHU-wxdV-j7we778YUp0aroNQ5oDRmoh5P1LRuoCF00R5TOFD6tQLs_ysW7fkV9QcWwVNm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3087405299</pqid></control><display><type>conference_proceeding</type><title>A review on machine learning in agricultural sciences</title><source>AIP Journals Complete</source><creator>Rayalu, G. Mokesh ; Farouq, Kamal Murtala ; Kolli, Chandra Sekhar ; Torres-Cruz, Fred ; Herrera, Alain Paul ; Muhammad, Rabia Sabo</creator><contributor>Kumaresan ; Shanmugam, Siva ; Rajagopal, Karthikeyan ; Vijayakumar, M. D.</contributor><creatorcontrib>Rayalu, G. Mokesh ; Farouq, Kamal Murtala ; Kolli, Chandra Sekhar ; Torres-Cruz, Fred ; Herrera, Alain Paul ; Muhammad, Rabia Sabo ; Kumaresan ; Shanmugam, Siva ; Rajagopal, Karthikeyan ; Vijayakumar, M. D.</creatorcontrib><description>Machine learning has combined with technologies such as big data and high-performance computers to create new opportunities for data-intensive investigations, among numerous other applications in the field of agri-technology. In this study, we give a thorough assessment of studies on the uses of machine learning in farming systems, with particular emphasis on the United States. Crop organisation, which included applications on yield estimation, disease monitoring, weed detection, plant health, and with so; cattle leadership, which included implementations on animal conservation and cattle ranching; irrigation; and soil conservation were the categories in which the efforts were analysed. The filtering and categorization of the articles offered here indicate how machine learning algorithms will be beneficial to the agricultural industry. Systems for farming operations are evolving into legitimate AI-enabled programs that offer thorough recommendations and findings for farmer strategic development and execution. By using data mining techniques on sensor data, this is made possible. Among the terms that come to mind include agricultural administration, conservation techniques, application of fertilizers, animal care, time management, and crop monitoring.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0218219</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Agricultural equipment ; Agrochemicals ; Algorithms ; Big Data ; Cattle ; Data mining ; Farming ; Industrial development ; Machine learning ; Soil analysis ; Soil conservation</subject><ispartof>AIP conference proceedings, 2024, Vol.2937 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2024 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0218219$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4510,23929,23930,25139,27923,27924,76155</link.rule.ids></links><search><contributor>Kumaresan</contributor><contributor>Shanmugam, Siva</contributor><contributor>Rajagopal, Karthikeyan</contributor><contributor>Vijayakumar, M. D.</contributor><creatorcontrib>Rayalu, G. Mokesh</creatorcontrib><creatorcontrib>Farouq, Kamal Murtala</creatorcontrib><creatorcontrib>Kolli, Chandra Sekhar</creatorcontrib><creatorcontrib>Torres-Cruz, Fred</creatorcontrib><creatorcontrib>Herrera, Alain Paul</creatorcontrib><creatorcontrib>Muhammad, Rabia Sabo</creatorcontrib><title>A review on machine learning in agricultural sciences</title><title>AIP conference proceedings</title><description>Machine learning has combined with technologies such as big data and high-performance computers to create new opportunities for data-intensive investigations, among numerous other applications in the field of agri-technology. In this study, we give a thorough assessment of studies on the uses of machine learning in farming systems, with particular emphasis on the United States. Crop organisation, which included applications on yield estimation, disease monitoring, weed detection, plant health, and with so; cattle leadership, which included implementations on animal conservation and cattle ranching; irrigation; and soil conservation were the categories in which the efforts were analysed. The filtering and categorization of the articles offered here indicate how machine learning algorithms will be beneficial to the agricultural industry. Systems for farming operations are evolving into legitimate AI-enabled programs that offer thorough recommendations and findings for farmer strategic development and execution. By using data mining techniques on sensor data, this is made possible. Among the terms that come to mind include agricultural administration, conservation techniques, application of fertilizers, animal care, time management, and crop monitoring.</description><subject>Agricultural equipment</subject><subject>Agrochemicals</subject><subject>Algorithms</subject><subject>Big Data</subject><subject>Cattle</subject><subject>Data mining</subject><subject>Farming</subject><subject>Industrial development</subject><subject>Machine learning</subject><subject>Soil analysis</subject><subject>Soil conservation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkDFPwzAUhC0EEqUw8A8ssSGlPNt5cTxWFRSkSiwd2KwXxymuUqc4CYh_T1A73XCf7k7H2L2AhYBCPeECpCilMBdsJhBFpgtRXLIZgMkzmauPa3bT93sAabQuZwyXPPnv4H94F_mB3GeInreeUgxxx0PktEvBje0wJmp574KPzve37Kqhtvd3Z52z7cvzdvWabd7Xb6vlJjsWymSeSqXJSO2Vq0QjKoFUulpOXqOxRF0b01QV1ZWRhpQjWUOFUHhwiOi8mrOHU-wxdV-j7we778YUp0aroNQ5oDRmoh5P1LRuoCF00R5TOFD6tQLs_ysW7fkV9QcWwVNm</recordid><startdate>20240802</startdate><enddate>20240802</enddate><creator>Rayalu, G. Mokesh</creator><creator>Farouq, Kamal Murtala</creator><creator>Kolli, Chandra Sekhar</creator><creator>Torres-Cruz, Fred</creator><creator>Herrera, Alain Paul</creator><creator>Muhammad, Rabia Sabo</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240802</creationdate><title>A review on machine learning in agricultural sciences</title><author>Rayalu, G. Mokesh ; Farouq, Kamal Murtala ; Kolli, Chandra Sekhar ; Torres-Cruz, Fred ; Herrera, Alain Paul ; Muhammad, Rabia Sabo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p639-ea837a927e3cb1f1b15a8cd2639f75857d99fbbadb929a3ca2d0b506e0c555ce3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural equipment</topic><topic>Agrochemicals</topic><topic>Algorithms</topic><topic>Big Data</topic><topic>Cattle</topic><topic>Data mining</topic><topic>Farming</topic><topic>Industrial development</topic><topic>Machine learning</topic><topic>Soil analysis</topic><topic>Soil conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rayalu, G. Mokesh</creatorcontrib><creatorcontrib>Farouq, Kamal Murtala</creatorcontrib><creatorcontrib>Kolli, Chandra Sekhar</creatorcontrib><creatorcontrib>Torres-Cruz, Fred</creatorcontrib><creatorcontrib>Herrera, Alain Paul</creatorcontrib><creatorcontrib>Muhammad, Rabia Sabo</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rayalu, G. Mokesh</au><au>Farouq, Kamal Murtala</au><au>Kolli, Chandra Sekhar</au><au>Torres-Cruz, Fred</au><au>Herrera, Alain Paul</au><au>Muhammad, Rabia Sabo</au><au>Kumaresan</au><au>Shanmugam, Siva</au><au>Rajagopal, Karthikeyan</au><au>Vijayakumar, M. D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A review on machine learning in agricultural sciences</atitle><btitle>AIP conference proceedings</btitle><date>2024-08-02</date><risdate>2024</risdate><volume>2937</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Machine learning has combined with technologies such as big data and high-performance computers to create new opportunities for data-intensive investigations, among numerous other applications in the field of agri-technology. In this study, we give a thorough assessment of studies on the uses of machine learning in farming systems, with particular emphasis on the United States. Crop organisation, which included applications on yield estimation, disease monitoring, weed detection, plant health, and with so; cattle leadership, which included implementations on animal conservation and cattle ranching; irrigation; and soil conservation were the categories in which the efforts were analysed. The filtering and categorization of the articles offered here indicate how machine learning algorithms will be beneficial to the agricultural industry. Systems for farming operations are evolving into legitimate AI-enabled programs that offer thorough recommendations and findings for farmer strategic development and execution. By using data mining techniques on sensor data, this is made possible. Among the terms that come to mind include agricultural administration, conservation techniques, application of fertilizers, animal care, time management, and crop monitoring.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0218219</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2937 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3087405299
source AIP Journals Complete
subjects Agricultural equipment
Agrochemicals
Algorithms
Big Data
Cattle
Data mining
Farming
Industrial development
Machine learning
Soil analysis
Soil conservation
title A review on machine learning in agricultural sciences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20review%20on%20machine%20learning%20in%20agricultural%20sciences&rft.btitle=AIP%20conference%20proceedings&rft.au=Rayalu,%20G.%20Mokesh&rft.date=2024-08-02&rft.volume=2937&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0218219&rft_dat=%3Cproquest_scita%3E3087405299%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087405299&rft_id=info:pmid/&rfr_iscdi=true