An Exact Bound for the Inner Product of Vectors in Cn
An exact upper bound of 12 is shown for the difference between the inner product of vectors in Cn. This bound is attained when the vectors are unit vectors. The inequality provided in the proposition can be seen as a lower bound on the modulus of the inner product. It is reminiscent of the reverse C...
Gespeichert in:
Veröffentlicht in: | The American mathematical monthly 2024-08, Vol.131 (7), p.627 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 627 |
container_title | The American mathematical monthly |
container_volume | 131 |
creator | Pinelis, Iosif |
description | An exact upper bound of 12 is shown for the difference between the inner product of vectors in Cn. This bound is attained when the vectors are unit vectors. The inequality provided in the proposition can be seen as a lower bound on the modulus of the inner product. It is reminiscent of the reverse Cauchy-Schwarz inequality. The proof of the proposition involves analyzing Lagrange multipliers and finding a clever solution. The case where the vectors are in Rn is considered first, and then the general case with unit vectors in Cn is addressed. The problem is reduced to proving a claim, which is easily proven using the Cauchy-Schwarz inequality. No potential conflict of interest is reported by the author. |
doi_str_mv | 10.1080/00029890.2024.2344412 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3087390326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087390326</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-d59b87d60ce488bc60b308afe60cd9a18f9f0bf0b5e4144842505d095e65410d3</originalsourceid><addsrcrecordid>eNotTd1KwzAYDaJgnT6CEPA69UvypU0uZ5lzMNCLzdvRNgk6JJlJCz6-GQoHDueHcwi551Bz0PAIAMJoA7UAgbWQiMjFBam4kcDAtOKSVOcOO5euyU3OxyJBoaiIWga6-unHiT7FOVjqY6LTh6ObEFyibynauWTR03c3TjFl-hloF27Jle-_srv75wXZP6923Qvbvq433XLLTpzLiVllBt3aBkaHWg9jA4ME3XtXHGt6rr3xMBQohxxRo1CgLBjlGoUcrFyQh7_dU4rfs8vT4RjnFMrloQy10oAUjfwFDSFGLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087390326</pqid></control><display><type>article</type><title>An Exact Bound for the Inner Product of Vectors in Cn</title><source>Alma/SFX Local Collection</source><creator>Pinelis, Iosif</creator><creatorcontrib>Pinelis, Iosif</creatorcontrib><description>An exact upper bound of 12 is shown for the difference between the inner product of vectors in Cn. This bound is attained when the vectors are unit vectors. The inequality provided in the proposition can be seen as a lower bound on the modulus of the inner product. It is reminiscent of the reverse Cauchy-Schwarz inequality. The proof of the proposition involves analyzing Lagrange multipliers and finding a clever solution. The case where the vectors are in Rn is considered first, and then the general case with unit vectors in Cn is addressed. The problem is reduced to proving a claim, which is easily proven using the Cauchy-Schwarz inequality. No potential conflict of interest is reported by the author.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.1080/00029890.2024.2344412</identifier><language>eng</language><publisher>Washington: Taylor & Francis Ltd</publisher><subject>Cauchy problems ; Euclidean space ; Income inequality ; Inequality ; Lagrange multiplier ; Linear equations ; Lower bounds ; Upper bounds</subject><ispartof>The American mathematical monthly, 2024-08, Vol.131 (7), p.627</ispartof><rights>Copyright Taylor & Francis Ltd. Jul/Aug 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pinelis, Iosif</creatorcontrib><title>An Exact Bound for the Inner Product of Vectors in Cn</title><title>The American mathematical monthly</title><description>An exact upper bound of 12 is shown for the difference between the inner product of vectors in Cn. This bound is attained when the vectors are unit vectors. The inequality provided in the proposition can be seen as a lower bound on the modulus of the inner product. It is reminiscent of the reverse Cauchy-Schwarz inequality. The proof of the proposition involves analyzing Lagrange multipliers and finding a clever solution. The case where the vectors are in Rn is considered first, and then the general case with unit vectors in Cn is addressed. The problem is reduced to proving a claim, which is easily proven using the Cauchy-Schwarz inequality. No potential conflict of interest is reported by the author.</description><subject>Cauchy problems</subject><subject>Euclidean space</subject><subject>Income inequality</subject><subject>Inequality</subject><subject>Lagrange multiplier</subject><subject>Linear equations</subject><subject>Lower bounds</subject><subject>Upper bounds</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotTd1KwzAYDaJgnT6CEPA69UvypU0uZ5lzMNCLzdvRNgk6JJlJCz6-GQoHDueHcwi551Bz0PAIAMJoA7UAgbWQiMjFBam4kcDAtOKSVOcOO5euyU3OxyJBoaiIWga6-unHiT7FOVjqY6LTh6ObEFyibynauWTR03c3TjFl-hloF27Jle-_srv75wXZP6923Qvbvq433XLLTpzLiVllBt3aBkaHWg9jA4ME3XtXHGt6rr3xMBQohxxRo1CgLBjlGoUcrFyQh7_dU4rfs8vT4RjnFMrloQy10oAUjfwFDSFGLA</recordid><startdate>20240808</startdate><enddate>20240808</enddate><creator>Pinelis, Iosif</creator><general>Taylor & Francis Ltd</general><scope>JQ2</scope></search><sort><creationdate>20240808</creationdate><title>An Exact Bound for the Inner Product of Vectors in Cn</title><author>Pinelis, Iosif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-d59b87d60ce488bc60b308afe60cd9a18f9f0bf0b5e4144842505d095e65410d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cauchy problems</topic><topic>Euclidean space</topic><topic>Income inequality</topic><topic>Inequality</topic><topic>Lagrange multiplier</topic><topic>Linear equations</topic><topic>Lower bounds</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinelis, Iosif</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinelis, Iosif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Exact Bound for the Inner Product of Vectors in Cn</atitle><jtitle>The American mathematical monthly</jtitle><date>2024-08-08</date><risdate>2024</risdate><volume>131</volume><issue>7</issue><spage>627</spage><pages>627-</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><abstract>An exact upper bound of 12 is shown for the difference between the inner product of vectors in Cn. This bound is attained when the vectors are unit vectors. The inequality provided in the proposition can be seen as a lower bound on the modulus of the inner product. It is reminiscent of the reverse Cauchy-Schwarz inequality. The proof of the proposition involves analyzing Lagrange multipliers and finding a clever solution. The case where the vectors are in Rn is considered first, and then the general case with unit vectors in Cn is addressed. The problem is reduced to proving a claim, which is easily proven using the Cauchy-Schwarz inequality. No potential conflict of interest is reported by the author.</abstract><cop>Washington</cop><pub>Taylor & Francis Ltd</pub><doi>10.1080/00029890.2024.2344412</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9890 |
ispartof | The American mathematical monthly, 2024-08, Vol.131 (7), p.627 |
issn | 0002-9890 1930-0972 |
language | eng |
recordid | cdi_proquest_journals_3087390326 |
source | Alma/SFX Local Collection |
subjects | Cauchy problems Euclidean space Income inequality Inequality Lagrange multiplier Linear equations Lower bounds Upper bounds |
title | An Exact Bound for the Inner Product of Vectors in Cn |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Exact%20Bound%20for%20the%20Inner%20Product%20of%20Vectors%20in%20Cn&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Pinelis,%20Iosif&rft.date=2024-08-08&rft.volume=131&rft.issue=7&rft.spage=627&rft.pages=627-&rft.issn=0002-9890&rft.eissn=1930-0972&rft_id=info:doi/10.1080/00029890.2024.2344412&rft_dat=%3Cproquest%3E3087390326%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087390326&rft_id=info:pmid/&rfr_iscdi=true |