An Exact Bound for the Inner Product of Vectors in Cn

An exact upper bound of 12 is shown for the difference between the inner product of vectors in Cn. This bound is attained when the vectors are unit vectors. The inequality provided in the proposition can be seen as a lower bound on the modulus of the inner product. It is reminiscent of the reverse C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American mathematical monthly 2024-08, Vol.131 (7), p.627
1. Verfasser: Pinelis, Iosif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 627
container_title The American mathematical monthly
container_volume 131
creator Pinelis, Iosif
description An exact upper bound of 12 is shown for the difference between the inner product of vectors in Cn. This bound is attained when the vectors are unit vectors. The inequality provided in the proposition can be seen as a lower bound on the modulus of the inner product. It is reminiscent of the reverse Cauchy-Schwarz inequality. The proof of the proposition involves analyzing Lagrange multipliers and finding a clever solution. The case where the vectors are in Rn is considered first, and then the general case with unit vectors in Cn is addressed. The problem is reduced to proving a claim, which is easily proven using the Cauchy-Schwarz inequality. No potential conflict of interest is reported by the author.
doi_str_mv 10.1080/00029890.2024.2344412
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3087390326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087390326</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-d59b87d60ce488bc60b308afe60cd9a18f9f0bf0b5e4144842505d095e65410d3</originalsourceid><addsrcrecordid>eNotTd1KwzAYDaJgnT6CEPA69UvypU0uZ5lzMNCLzdvRNgk6JJlJCz6-GQoHDueHcwi551Bz0PAIAMJoA7UAgbWQiMjFBam4kcDAtOKSVOcOO5euyU3OxyJBoaiIWga6-unHiT7FOVjqY6LTh6ObEFyibynauWTR03c3TjFl-hloF27Jle-_srv75wXZP6923Qvbvq433XLLTpzLiVllBt3aBkaHWg9jA4ME3XtXHGt6rr3xMBQohxxRo1CgLBjlGoUcrFyQh7_dU4rfs8vT4RjnFMrloQy10oAUjfwFDSFGLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087390326</pqid></control><display><type>article</type><title>An Exact Bound for the Inner Product of Vectors in Cn</title><source>Alma/SFX Local Collection</source><creator>Pinelis, Iosif</creator><creatorcontrib>Pinelis, Iosif</creatorcontrib><description>An exact upper bound of 12 is shown for the difference between the inner product of vectors in Cn. This bound is attained when the vectors are unit vectors. The inequality provided in the proposition can be seen as a lower bound on the modulus of the inner product. It is reminiscent of the reverse Cauchy-Schwarz inequality. The proof of the proposition involves analyzing Lagrange multipliers and finding a clever solution. The case where the vectors are in Rn is considered first, and then the general case with unit vectors in Cn is addressed. The problem is reduced to proving a claim, which is easily proven using the Cauchy-Schwarz inequality. No potential conflict of interest is reported by the author.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.1080/00029890.2024.2344412</identifier><language>eng</language><publisher>Washington: Taylor &amp; Francis Ltd</publisher><subject>Cauchy problems ; Euclidean space ; Income inequality ; Inequality ; Lagrange multiplier ; Linear equations ; Lower bounds ; Upper bounds</subject><ispartof>The American mathematical monthly, 2024-08, Vol.131 (7), p.627</ispartof><rights>Copyright Taylor &amp; Francis Ltd. Jul/Aug 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pinelis, Iosif</creatorcontrib><title>An Exact Bound for the Inner Product of Vectors in Cn</title><title>The American mathematical monthly</title><description>An exact upper bound of 12 is shown for the difference between the inner product of vectors in Cn. This bound is attained when the vectors are unit vectors. The inequality provided in the proposition can be seen as a lower bound on the modulus of the inner product. It is reminiscent of the reverse Cauchy-Schwarz inequality. The proof of the proposition involves analyzing Lagrange multipliers and finding a clever solution. The case where the vectors are in Rn is considered first, and then the general case with unit vectors in Cn is addressed. The problem is reduced to proving a claim, which is easily proven using the Cauchy-Schwarz inequality. No potential conflict of interest is reported by the author.</description><subject>Cauchy problems</subject><subject>Euclidean space</subject><subject>Income inequality</subject><subject>Inequality</subject><subject>Lagrange multiplier</subject><subject>Linear equations</subject><subject>Lower bounds</subject><subject>Upper bounds</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotTd1KwzAYDaJgnT6CEPA69UvypU0uZ5lzMNCLzdvRNgk6JJlJCz6-GQoHDueHcwi551Bz0PAIAMJoA7UAgbWQiMjFBam4kcDAtOKSVOcOO5euyU3OxyJBoaiIWga6-unHiT7FOVjqY6LTh6ObEFyibynauWTR03c3TjFl-hloF27Jle-_srv75wXZP6923Qvbvq433XLLTpzLiVllBt3aBkaHWg9jA4ME3XtXHGt6rr3xMBQohxxRo1CgLBjlGoUcrFyQh7_dU4rfs8vT4RjnFMrloQy10oAUjfwFDSFGLA</recordid><startdate>20240808</startdate><enddate>20240808</enddate><creator>Pinelis, Iosif</creator><general>Taylor &amp; Francis Ltd</general><scope>JQ2</scope></search><sort><creationdate>20240808</creationdate><title>An Exact Bound for the Inner Product of Vectors in Cn</title><author>Pinelis, Iosif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-d59b87d60ce488bc60b308afe60cd9a18f9f0bf0b5e4144842505d095e65410d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cauchy problems</topic><topic>Euclidean space</topic><topic>Income inequality</topic><topic>Inequality</topic><topic>Lagrange multiplier</topic><topic>Linear equations</topic><topic>Lower bounds</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinelis, Iosif</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinelis, Iosif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Exact Bound for the Inner Product of Vectors in Cn</atitle><jtitle>The American mathematical monthly</jtitle><date>2024-08-08</date><risdate>2024</risdate><volume>131</volume><issue>7</issue><spage>627</spage><pages>627-</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><abstract>An exact upper bound of 12 is shown for the difference between the inner product of vectors in Cn. This bound is attained when the vectors are unit vectors. The inequality provided in the proposition can be seen as a lower bound on the modulus of the inner product. It is reminiscent of the reverse Cauchy-Schwarz inequality. The proof of the proposition involves analyzing Lagrange multipliers and finding a clever solution. The case where the vectors are in Rn is considered first, and then the general case with unit vectors in Cn is addressed. The problem is reduced to proving a claim, which is easily proven using the Cauchy-Schwarz inequality. No potential conflict of interest is reported by the author.</abstract><cop>Washington</cop><pub>Taylor &amp; Francis Ltd</pub><doi>10.1080/00029890.2024.2344412</doi></addata></record>
fulltext fulltext
identifier ISSN: 0002-9890
ispartof The American mathematical monthly, 2024-08, Vol.131 (7), p.627
issn 0002-9890
1930-0972
language eng
recordid cdi_proquest_journals_3087390326
source Alma/SFX Local Collection
subjects Cauchy problems
Euclidean space
Income inequality
Inequality
Lagrange multiplier
Linear equations
Lower bounds
Upper bounds
title An Exact Bound for the Inner Product of Vectors in Cn
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Exact%20Bound%20for%20the%20Inner%20Product%20of%20Vectors%20in%20Cn&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Pinelis,%20Iosif&rft.date=2024-08-08&rft.volume=131&rft.issue=7&rft.spage=627&rft.pages=627-&rft.issn=0002-9890&rft.eissn=1930-0972&rft_id=info:doi/10.1080/00029890.2024.2344412&rft_dat=%3Cproquest%3E3087390326%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087390326&rft_id=info:pmid/&rfr_iscdi=true