Schrödinger Symmetry: A Historical Review
This paper reviews the history of the conformal extension of Galilean symmetry, now called Schrödinger symmetry. In the physics literature, its discovery is commonly attributed to Jackiw, Niederer and Hagen (1972). However, Schrödinger symmetry has a much older ancestry: the associated conserved qua...
Gespeichert in:
Veröffentlicht in: | Int.J.Theor.Phys 2024-08, Vol.63 (8), Article 184 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Int.J.Theor.Phys |
container_volume | 63 |
creator | Duval, C. Henkel, M. Horvathy, P. A. Rouhani, S. Zhang, P.-M. |
description | This paper reviews the history of the conformal extension of Galilean symmetry, now called Schrödinger symmetry. In the physics literature, its discovery is commonly attributed to Jackiw, Niederer and Hagen (1972). However, Schrödinger symmetry has a much older ancestry: the associated conserved quantities were known to Jacobi in 1842/43 and its Euclidean counterpart was discovered by Sophus Lie in 1881 in his studies of the heat equation. A convenient way to study Schrödinger symmetry is provided by a non-relativistic Kaluza-Klein-type “Bargmann” framework, first proposed by Eisenhart (1929), but then forgotten and re-discovered by Duval et al. only in 1984. Representations of Schrödinger symmetry differ by the value
z
=
2
of the dynamical exponent from the value
z
=
1
found in representations of relativistic conformal invariance. For generic values of
z
, whole families of new algebras exist, which for
z
=
2
/
ℓ
include the
ℓ
-conformal Galilean algebras. We also review the non-relativistic limit of conformal algebras and that this limit leads to the 1-conformal Galilean algebra and not to the Schrödinger algebra. The latter can be recovered in the Bargmann framework through reduction. A distinctive feature of Galilean and Schrödinger symmetries are the Bargmann super-selection rules, algebraically related to a central extension. An empirical consequence of this was known as “mass conservation” already to Lavoisier. As an illustration of these concepts, some applications to physical ageing in simple model systems are reviewed. |
doi_str_mv | 10.1007/s10773-024-05673-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_3087289930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087289930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234t-a0be4a297a7372e4dc4f6f6ac56818779e36e1836b928b3f7300c1f19cd250843</originalsourceid><addsrcrecordid>eNp9kM1Kw0AURgdRsFZfwFXAlUL0zv-Mu1LUCgXB6nqYTic2JWnqTFrJi_kCvpiJEXXl6l4u5_u4HIROMVxiAHkVMUhJUyAsBS66bQ8NMJck1Vzy_T_7ITqKcQUAGpgaoIuZW4aP90W-fvEhmTVl6evQXCejZJLHugq5s0Xy6He5fztGB5ktoj_5nkP0fHvzNJ6k04e7-_FomjpCWZ1amHtmiZZWUkk8WziWiUxYx4XCSkrtqfBYUTHXRM1pJimAwxnWbkE4KEaH6LzvXdrCbEJe2tCYyuZmMpqa7gaMM6wI7HDLnvXsJlSvWx9rs6q2Yd2-ZygoSZTWFFqK9JQLVYzBZz-1GEznz_T-TOvPfPkzXYj2odjCnZ3f6n9Sn9lfcF4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087289930</pqid></control><display><type>article</type><title>Schrödinger Symmetry: A Historical Review</title><source>SpringerLink Journals - AutoHoldings</source><creator>Duval, C. ; Henkel, M. ; Horvathy, P. A. ; Rouhani, S. ; Zhang, P.-M.</creator><creatorcontrib>Duval, C. ; Henkel, M. ; Horvathy, P. A. ; Rouhani, S. ; Zhang, P.-M.</creatorcontrib><description>This paper reviews the history of the conformal extension of Galilean symmetry, now called Schrödinger symmetry. In the physics literature, its discovery is commonly attributed to Jackiw, Niederer and Hagen (1972). However, Schrödinger symmetry has a much older ancestry: the associated conserved quantities were known to Jacobi in 1842/43 and its Euclidean counterpart was discovered by Sophus Lie in 1881 in his studies of the heat equation. A convenient way to study Schrödinger symmetry is provided by a non-relativistic Kaluza-Klein-type “Bargmann” framework, first proposed by Eisenhart (1929), but then forgotten and re-discovered by Duval et al. only in 1984. Representations of Schrödinger symmetry differ by the value
z
=
2
of the dynamical exponent from the value
z
=
1
found in representations of relativistic conformal invariance. For generic values of
z
, whole families of new algebras exist, which for
z
=
2
/
ℓ
include the
ℓ
-conformal Galilean algebras. We also review the non-relativistic limit of conformal algebras and that this limit leads to the 1-conformal Galilean algebra and not to the Schrödinger algebra. The latter can be recovered in the Bargmann framework through reduction. A distinctive feature of Galilean and Schrödinger symmetries are the Bargmann super-selection rules, algebraically related to a central extension. An empirical consequence of this was known as “mass conservation” already to Lavoisier. As an illustration of these concepts, some applications to physical ageing in simple model systems are reviewed.</description><identifier>ISSN: 1572-9575</identifier><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-024-05673-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Condensed Matter ; Elementary Particles ; General Relativity and Quantum Cosmology ; High Energy Physics - Theory ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativistic effects ; Representations ; Review ; Symmetry ; Theoretical ; Thermodynamics</subject><ispartof>Int.J.Theor.Phys, 2024-08, Vol.63 (8), Article 184</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c234t-a0be4a297a7372e4dc4f6f6ac56818779e36e1836b928b3f7300c1f19cd250843</cites><orcidid>0000-0003-4738-2627 ; 0000-0002-1737-3845 ; 0000-0002-6337-4494 ; 0000-0002-5048-7852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10773-024-05673-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10773-024-05673-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04541820$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Duval, C.</creatorcontrib><creatorcontrib>Henkel, M.</creatorcontrib><creatorcontrib>Horvathy, P. A.</creatorcontrib><creatorcontrib>Rouhani, S.</creatorcontrib><creatorcontrib>Zhang, P.-M.</creatorcontrib><title>Schrödinger Symmetry: A Historical Review</title><title>Int.J.Theor.Phys</title><addtitle>Int J Theor Phys</addtitle><description>This paper reviews the history of the conformal extension of Galilean symmetry, now called Schrödinger symmetry. In the physics literature, its discovery is commonly attributed to Jackiw, Niederer and Hagen (1972). However, Schrödinger symmetry has a much older ancestry: the associated conserved quantities were known to Jacobi in 1842/43 and its Euclidean counterpart was discovered by Sophus Lie in 1881 in his studies of the heat equation. A convenient way to study Schrödinger symmetry is provided by a non-relativistic Kaluza-Klein-type “Bargmann” framework, first proposed by Eisenhart (1929), but then forgotten and re-discovered by Duval et al. only in 1984. Representations of Schrödinger symmetry differ by the value
z
=
2
of the dynamical exponent from the value
z
=
1
found in representations of relativistic conformal invariance. For generic values of
z
, whole families of new algebras exist, which for
z
=
2
/
ℓ
include the
ℓ
-conformal Galilean algebras. We also review the non-relativistic limit of conformal algebras and that this limit leads to the 1-conformal Galilean algebra and not to the Schrödinger algebra. The latter can be recovered in the Bargmann framework through reduction. A distinctive feature of Galilean and Schrödinger symmetries are the Bargmann super-selection rules, algebraically related to a central extension. An empirical consequence of this was known as “mass conservation” already to Lavoisier. As an illustration of these concepts, some applications to physical ageing in simple model systems are reviewed.</description><subject>Algebra</subject><subject>Condensed Matter</subject><subject>Elementary Particles</subject><subject>General Relativity and Quantum Cosmology</subject><subject>High Energy Physics - Theory</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativistic effects</subject><subject>Representations</subject><subject>Review</subject><subject>Symmetry</subject><subject>Theoretical</subject><subject>Thermodynamics</subject><issn>1572-9575</issn><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AURgdRsFZfwFXAlUL0zv-Mu1LUCgXB6nqYTic2JWnqTFrJi_kCvpiJEXXl6l4u5_u4HIROMVxiAHkVMUhJUyAsBS66bQ8NMJck1Vzy_T_7ITqKcQUAGpgaoIuZW4aP90W-fvEhmTVl6evQXCejZJLHugq5s0Xy6He5fztGB5ktoj_5nkP0fHvzNJ6k04e7-_FomjpCWZ1amHtmiZZWUkk8WziWiUxYx4XCSkrtqfBYUTHXRM1pJimAwxnWbkE4KEaH6LzvXdrCbEJe2tCYyuZmMpqa7gaMM6wI7HDLnvXsJlSvWx9rs6q2Yd2-ZygoSZTWFFqK9JQLVYzBZz-1GEznz_T-TOvPfPkzXYj2odjCnZ3f6n9Sn9lfcF4</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Duval, C.</creator><creator>Henkel, M.</creator><creator>Horvathy, P. A.</creator><creator>Rouhani, S.</creator><creator>Zhang, P.-M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4738-2627</orcidid><orcidid>https://orcid.org/0000-0002-1737-3845</orcidid><orcidid>https://orcid.org/0000-0002-6337-4494</orcidid><orcidid>https://orcid.org/0000-0002-5048-7852</orcidid></search><sort><creationdate>20240801</creationdate><title>Schrödinger Symmetry: A Historical Review</title><author>Duval, C. ; Henkel, M. ; Horvathy, P. A. ; Rouhani, S. ; Zhang, P.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234t-a0be4a297a7372e4dc4f6f6ac56818779e36e1836b928b3f7300c1f19cd250843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Condensed Matter</topic><topic>Elementary Particles</topic><topic>General Relativity and Quantum Cosmology</topic><topic>High Energy Physics - Theory</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativistic effects</topic><topic>Representations</topic><topic>Review</topic><topic>Symmetry</topic><topic>Theoretical</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duval, C.</creatorcontrib><creatorcontrib>Henkel, M.</creatorcontrib><creatorcontrib>Horvathy, P. A.</creatorcontrib><creatorcontrib>Rouhani, S.</creatorcontrib><creatorcontrib>Zhang, P.-M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Int.J.Theor.Phys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duval, C.</au><au>Henkel, M.</au><au>Horvathy, P. A.</au><au>Rouhani, S.</au><au>Zhang, P.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Schrödinger Symmetry: A Historical Review</atitle><jtitle>Int.J.Theor.Phys</jtitle><stitle>Int J Theor Phys</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>63</volume><issue>8</issue><artnum>184</artnum><issn>1572-9575</issn><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>This paper reviews the history of the conformal extension of Galilean symmetry, now called Schrödinger symmetry. In the physics literature, its discovery is commonly attributed to Jackiw, Niederer and Hagen (1972). However, Schrödinger symmetry has a much older ancestry: the associated conserved quantities were known to Jacobi in 1842/43 and its Euclidean counterpart was discovered by Sophus Lie in 1881 in his studies of the heat equation. A convenient way to study Schrödinger symmetry is provided by a non-relativistic Kaluza-Klein-type “Bargmann” framework, first proposed by Eisenhart (1929), but then forgotten and re-discovered by Duval et al. only in 1984. Representations of Schrödinger symmetry differ by the value
z
=
2
of the dynamical exponent from the value
z
=
1
found in representations of relativistic conformal invariance. For generic values of
z
, whole families of new algebras exist, which for
z
=
2
/
ℓ
include the
ℓ
-conformal Galilean algebras. We also review the non-relativistic limit of conformal algebras and that this limit leads to the 1-conformal Galilean algebra and not to the Schrödinger algebra. The latter can be recovered in the Bargmann framework through reduction. A distinctive feature of Galilean and Schrödinger symmetries are the Bargmann super-selection rules, algebraically related to a central extension. An empirical consequence of this was known as “mass conservation” already to Lavoisier. As an illustration of these concepts, some applications to physical ageing in simple model systems are reviewed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-024-05673-0</doi><orcidid>https://orcid.org/0000-0003-4738-2627</orcidid><orcidid>https://orcid.org/0000-0002-1737-3845</orcidid><orcidid>https://orcid.org/0000-0002-6337-4494</orcidid><orcidid>https://orcid.org/0000-0002-5048-7852</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1572-9575 |
ispartof | Int.J.Theor.Phys, 2024-08, Vol.63 (8), Article 184 |
issn | 1572-9575 0020-7748 1572-9575 |
language | eng |
recordid | cdi_proquest_journals_3087289930 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Condensed Matter Elementary Particles General Relativity and Quantum Cosmology High Energy Physics - Theory Mathematical and Computational Physics Mathematical Physics Physics Physics and Astronomy Quantum Field Theory Quantum Physics Relativistic effects Representations Review Symmetry Theoretical Thermodynamics |
title | Schrödinger Symmetry: A Historical Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Schr%C3%B6dinger%20Symmetry:%20A%20Historical%20Review&rft.jtitle=Int.J.Theor.Phys&rft.au=Duval,%20C.&rft.date=2024-08-01&rft.volume=63&rft.issue=8&rft.artnum=184&rft.issn=1572-9575&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-024-05673-0&rft_dat=%3Cproquest_hal_p%3E3087289930%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087289930&rft_id=info:pmid/&rfr_iscdi=true |