Schrödinger Symmetry: A Historical Review

This paper reviews the history of the conformal extension of Galilean symmetry, now called Schrödinger symmetry. In the physics literature, its discovery is commonly attributed to Jackiw, Niederer and Hagen (1972). However, Schrödinger symmetry has a much older ancestry: the associated conserved qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Int.J.Theor.Phys 2024-08, Vol.63 (8), Article 184
Hauptverfasser: Duval, C., Henkel, M., Horvathy, P. A., Rouhani, S., Zhang, P.-M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Int.J.Theor.Phys
container_volume 63
creator Duval, C.
Henkel, M.
Horvathy, P. A.
Rouhani, S.
Zhang, P.-M.
description This paper reviews the history of the conformal extension of Galilean symmetry, now called Schrödinger symmetry. In the physics literature, its discovery is commonly attributed to Jackiw, Niederer and Hagen (1972). However, Schrödinger symmetry has a much older ancestry: the associated conserved quantities were known to Jacobi in 1842/43 and its Euclidean counterpart was discovered by Sophus Lie in 1881 in his studies of the heat equation. A convenient way to study Schrödinger symmetry is provided by a non-relativistic Kaluza-Klein-type “Bargmann” framework, first proposed by Eisenhart (1929), but then forgotten and re-discovered by Duval et al. only in 1984. Representations of Schrödinger symmetry differ by the value z = 2 of the dynamical exponent from the value z = 1 found in representations of relativistic conformal invariance. For generic values of z , whole families of new algebras exist, which for z = 2 / ℓ include the ℓ -conformal Galilean algebras. We also review the non-relativistic limit of conformal algebras and that this limit leads to the 1-conformal Galilean algebra and not to the Schrödinger algebra. The latter can be recovered in the Bargmann framework through reduction. A distinctive feature of Galilean and Schrödinger symmetries are the Bargmann super-selection rules, algebraically related to a central extension. An empirical consequence of this was known as “mass conservation” already to Lavoisier. As an illustration of these concepts, some applications to physical ageing in simple model systems are reviewed.
doi_str_mv 10.1007/s10773-024-05673-0
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_3087289930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087289930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234t-a0be4a297a7372e4dc4f6f6ac56818779e36e1836b928b3f7300c1f19cd250843</originalsourceid><addsrcrecordid>eNp9kM1Kw0AURgdRsFZfwFXAlUL0zv-Mu1LUCgXB6nqYTic2JWnqTFrJi_kCvpiJEXXl6l4u5_u4HIROMVxiAHkVMUhJUyAsBS66bQ8NMJck1Vzy_T_7ITqKcQUAGpgaoIuZW4aP90W-fvEhmTVl6evQXCejZJLHugq5s0Xy6He5fztGB5ktoj_5nkP0fHvzNJ6k04e7-_FomjpCWZ1amHtmiZZWUkk8WziWiUxYx4XCSkrtqfBYUTHXRM1pJimAwxnWbkE4KEaH6LzvXdrCbEJe2tCYyuZmMpqa7gaMM6wI7HDLnvXsJlSvWx9rs6q2Yd2-ZygoSZTWFFqK9JQLVYzBZz-1GEznz_T-TOvPfPkzXYj2odjCnZ3f6n9Sn9lfcF4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087289930</pqid></control><display><type>article</type><title>Schrödinger Symmetry: A Historical Review</title><source>SpringerLink Journals - AutoHoldings</source><creator>Duval, C. ; Henkel, M. ; Horvathy, P. A. ; Rouhani, S. ; Zhang, P.-M.</creator><creatorcontrib>Duval, C. ; Henkel, M. ; Horvathy, P. A. ; Rouhani, S. ; Zhang, P.-M.</creatorcontrib><description>This paper reviews the history of the conformal extension of Galilean symmetry, now called Schrödinger symmetry. In the physics literature, its discovery is commonly attributed to Jackiw, Niederer and Hagen (1972). However, Schrödinger symmetry has a much older ancestry: the associated conserved quantities were known to Jacobi in 1842/43 and its Euclidean counterpart was discovered by Sophus Lie in 1881 in his studies of the heat equation. A convenient way to study Schrödinger symmetry is provided by a non-relativistic Kaluza-Klein-type “Bargmann” framework, first proposed by Eisenhart (1929), but then forgotten and re-discovered by Duval et al. only in 1984. Representations of Schrödinger symmetry differ by the value z = 2 of the dynamical exponent from the value z = 1 found in representations of relativistic conformal invariance. For generic values of z , whole families of new algebras exist, which for z = 2 / ℓ include the ℓ -conformal Galilean algebras. We also review the non-relativistic limit of conformal algebras and that this limit leads to the 1-conformal Galilean algebra and not to the Schrödinger algebra. The latter can be recovered in the Bargmann framework through reduction. A distinctive feature of Galilean and Schrödinger symmetries are the Bargmann super-selection rules, algebraically related to a central extension. An empirical consequence of this was known as “mass conservation” already to Lavoisier. As an illustration of these concepts, some applications to physical ageing in simple model systems are reviewed.</description><identifier>ISSN: 1572-9575</identifier><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-024-05673-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Condensed Matter ; Elementary Particles ; General Relativity and Quantum Cosmology ; High Energy Physics - Theory ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativistic effects ; Representations ; Review ; Symmetry ; Theoretical ; Thermodynamics</subject><ispartof>Int.J.Theor.Phys, 2024-08, Vol.63 (8), Article 184</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c234t-a0be4a297a7372e4dc4f6f6ac56818779e36e1836b928b3f7300c1f19cd250843</cites><orcidid>0000-0003-4738-2627 ; 0000-0002-1737-3845 ; 0000-0002-6337-4494 ; 0000-0002-5048-7852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10773-024-05673-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10773-024-05673-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04541820$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Duval, C.</creatorcontrib><creatorcontrib>Henkel, M.</creatorcontrib><creatorcontrib>Horvathy, P. A.</creatorcontrib><creatorcontrib>Rouhani, S.</creatorcontrib><creatorcontrib>Zhang, P.-M.</creatorcontrib><title>Schrödinger Symmetry: A Historical Review</title><title>Int.J.Theor.Phys</title><addtitle>Int J Theor Phys</addtitle><description>This paper reviews the history of the conformal extension of Galilean symmetry, now called Schrödinger symmetry. In the physics literature, its discovery is commonly attributed to Jackiw, Niederer and Hagen (1972). However, Schrödinger symmetry has a much older ancestry: the associated conserved quantities were known to Jacobi in 1842/43 and its Euclidean counterpart was discovered by Sophus Lie in 1881 in his studies of the heat equation. A convenient way to study Schrödinger symmetry is provided by a non-relativistic Kaluza-Klein-type “Bargmann” framework, first proposed by Eisenhart (1929), but then forgotten and re-discovered by Duval et al. only in 1984. Representations of Schrödinger symmetry differ by the value z = 2 of the dynamical exponent from the value z = 1 found in representations of relativistic conformal invariance. For generic values of z , whole families of new algebras exist, which for z = 2 / ℓ include the ℓ -conformal Galilean algebras. We also review the non-relativistic limit of conformal algebras and that this limit leads to the 1-conformal Galilean algebra and not to the Schrödinger algebra. The latter can be recovered in the Bargmann framework through reduction. A distinctive feature of Galilean and Schrödinger symmetries are the Bargmann super-selection rules, algebraically related to a central extension. An empirical consequence of this was known as “mass conservation” already to Lavoisier. As an illustration of these concepts, some applications to physical ageing in simple model systems are reviewed.</description><subject>Algebra</subject><subject>Condensed Matter</subject><subject>Elementary Particles</subject><subject>General Relativity and Quantum Cosmology</subject><subject>High Energy Physics - Theory</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativistic effects</subject><subject>Representations</subject><subject>Review</subject><subject>Symmetry</subject><subject>Theoretical</subject><subject>Thermodynamics</subject><issn>1572-9575</issn><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AURgdRsFZfwFXAlUL0zv-Mu1LUCgXB6nqYTic2JWnqTFrJi_kCvpiJEXXl6l4u5_u4HIROMVxiAHkVMUhJUyAsBS66bQ8NMJck1Vzy_T_7ITqKcQUAGpgaoIuZW4aP90W-fvEhmTVl6evQXCejZJLHugq5s0Xy6He5fztGB5ktoj_5nkP0fHvzNJ6k04e7-_FomjpCWZ1amHtmiZZWUkk8WziWiUxYx4XCSkrtqfBYUTHXRM1pJimAwxnWbkE4KEaH6LzvXdrCbEJe2tCYyuZmMpqa7gaMM6wI7HDLnvXsJlSvWx9rs6q2Yd2-ZygoSZTWFFqK9JQLVYzBZz-1GEznz_T-TOvPfPkzXYj2odjCnZ3f6n9Sn9lfcF4</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Duval, C.</creator><creator>Henkel, M.</creator><creator>Horvathy, P. A.</creator><creator>Rouhani, S.</creator><creator>Zhang, P.-M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4738-2627</orcidid><orcidid>https://orcid.org/0000-0002-1737-3845</orcidid><orcidid>https://orcid.org/0000-0002-6337-4494</orcidid><orcidid>https://orcid.org/0000-0002-5048-7852</orcidid></search><sort><creationdate>20240801</creationdate><title>Schrödinger Symmetry: A Historical Review</title><author>Duval, C. ; Henkel, M. ; Horvathy, P. A. ; Rouhani, S. ; Zhang, P.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234t-a0be4a297a7372e4dc4f6f6ac56818779e36e1836b928b3f7300c1f19cd250843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Condensed Matter</topic><topic>Elementary Particles</topic><topic>General Relativity and Quantum Cosmology</topic><topic>High Energy Physics - Theory</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativistic effects</topic><topic>Representations</topic><topic>Review</topic><topic>Symmetry</topic><topic>Theoretical</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duval, C.</creatorcontrib><creatorcontrib>Henkel, M.</creatorcontrib><creatorcontrib>Horvathy, P. A.</creatorcontrib><creatorcontrib>Rouhani, S.</creatorcontrib><creatorcontrib>Zhang, P.-M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Int.J.Theor.Phys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duval, C.</au><au>Henkel, M.</au><au>Horvathy, P. A.</au><au>Rouhani, S.</au><au>Zhang, P.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Schrödinger Symmetry: A Historical Review</atitle><jtitle>Int.J.Theor.Phys</jtitle><stitle>Int J Theor Phys</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>63</volume><issue>8</issue><artnum>184</artnum><issn>1572-9575</issn><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>This paper reviews the history of the conformal extension of Galilean symmetry, now called Schrödinger symmetry. In the physics literature, its discovery is commonly attributed to Jackiw, Niederer and Hagen (1972). However, Schrödinger symmetry has a much older ancestry: the associated conserved quantities were known to Jacobi in 1842/43 and its Euclidean counterpart was discovered by Sophus Lie in 1881 in his studies of the heat equation. A convenient way to study Schrödinger symmetry is provided by a non-relativistic Kaluza-Klein-type “Bargmann” framework, first proposed by Eisenhart (1929), but then forgotten and re-discovered by Duval et al. only in 1984. Representations of Schrödinger symmetry differ by the value z = 2 of the dynamical exponent from the value z = 1 found in representations of relativistic conformal invariance. For generic values of z , whole families of new algebras exist, which for z = 2 / ℓ include the ℓ -conformal Galilean algebras. We also review the non-relativistic limit of conformal algebras and that this limit leads to the 1-conformal Galilean algebra and not to the Schrödinger algebra. The latter can be recovered in the Bargmann framework through reduction. A distinctive feature of Galilean and Schrödinger symmetries are the Bargmann super-selection rules, algebraically related to a central extension. An empirical consequence of this was known as “mass conservation” already to Lavoisier. As an illustration of these concepts, some applications to physical ageing in simple model systems are reviewed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-024-05673-0</doi><orcidid>https://orcid.org/0000-0003-4738-2627</orcidid><orcidid>https://orcid.org/0000-0002-1737-3845</orcidid><orcidid>https://orcid.org/0000-0002-6337-4494</orcidid><orcidid>https://orcid.org/0000-0002-5048-7852</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1572-9575
ispartof Int.J.Theor.Phys, 2024-08, Vol.63 (8), Article 184
issn 1572-9575
0020-7748
1572-9575
language eng
recordid cdi_proquest_journals_3087289930
source SpringerLink Journals - AutoHoldings
subjects Algebra
Condensed Matter
Elementary Particles
General Relativity and Quantum Cosmology
High Energy Physics - Theory
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Field Theory
Quantum Physics
Relativistic effects
Representations
Review
Symmetry
Theoretical
Thermodynamics
title Schrödinger Symmetry: A Historical Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Schr%C3%B6dinger%20Symmetry:%20A%20Historical%20Review&rft.jtitle=Int.J.Theor.Phys&rft.au=Duval,%20C.&rft.date=2024-08-01&rft.volume=63&rft.issue=8&rft.artnum=184&rft.issn=1572-9575&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-024-05673-0&rft_dat=%3Cproquest_hal_p%3E3087289930%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087289930&rft_id=info:pmid/&rfr_iscdi=true