Preparation and properties of in situ TiC/corundum–mullite electrically conductive ceramic

In situ TiC/corundum–mullite electrically conductive ceramics were prepared by carbon‐bed sintering method using bauxite, clay and Ti3SiC2 powders as raw materials. The phase composition, microstructure, shrinkage, apparent porosity, bulk density, compressive strength, and resistivity of samples wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied ceramic technology 2024-09, Vol.21 (5), p.3109-3119
Hauptverfasser: Jing, Wenpeng, Ding, Donghai, Xiao, Guoqing, Jin, Endong, Chong, Xiaochuan, Ding, Yudong, Gao, Kaiqiang, Shi, Xiaoqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3119
container_issue 5
container_start_page 3109
container_title International journal of applied ceramic technology
container_volume 21
creator Jing, Wenpeng
Ding, Donghai
Xiao, Guoqing
Jin, Endong
Chong, Xiaochuan
Ding, Yudong
Gao, Kaiqiang
Shi, Xiaoqi
description In situ TiC/corundum–mullite electrically conductive ceramics were prepared by carbon‐bed sintering method using bauxite, clay and Ti3SiC2 powders as raw materials. The phase composition, microstructure, shrinkage, apparent porosity, bulk density, compressive strength, and resistivity of samples were investigated. The X‐ray diffraction results indicate that the TiC is completely generated by desilicidation reaction of the Ti3SiC2 at 1 300°C. When the sintering temperature is 1 300°C and Ti3SiC2 powder addition is 22 wt.%, the properties of the sample are optimum, with a longitudinal shrinkage of 2.04%, a radial shrinkage of 2.56%, an apparent porosity of 19.01%, a bulk density of 2.53 g/cm3, a compressive strength of 181 MPa, and a resistivity of 267 Ω·cm. The electrically conductive phase TiC is connected into a complete electrically conductive network. The shrinkages of samples decrease with increasing sintering temperature, which indicates that the samples expand due to secondary mullitization. The continuous electrically conductive network of TiC is destroyed. As the Ti3SiC2 powder addition increases from 14 to 20 wt.%, the resistivity of the samples decreases significantly, but the further increase in the Ti3SiC2 powder addition has no significant effect on the resistivity.
doi_str_mv 10.1111/ijac.14754
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3087050802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087050802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2604-45d389baa7c4b6e6aca86fc77d670ab44e2e19d605ce3b9af41c694722289ee63</originalsourceid><addsrcrecordid>eNp9kM1KxDAQgIMouK5efIKAN6G7SZom7XEp_qws6GEFD0JI0ylk6Z9Jq-zNd_ANfRKz1rNzmYH55ocPoUtKFjTE0u60WVAuE36EZlRyHklO2HGoEy6ihLOXU3Tm_Y6QmMexmKHXJwe9dnqwXYt1W-LedT24wYLHXYVti70dRry1-dJ0bmzLsfn-_GrGurYDYKjBDM4aXdd7bLrQNYN9B2zA6caac3RS6drDxV-eo-fbm21-H20e79b5ahMZJgiPeFLGaVZoLQ0vBAhtdCoqI2UpJNEF58CAZqUgiYG4yHTFqREZl4yxNAMQ8RxdTXvD828j-EHtutG14aSKSSpJQlLCAnU9UcZ13juoVO9so91eUaIO9tTBnvq1F2A6wR-2hv0_pFo_rPJp5gevNXRa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087050802</pqid></control><display><type>article</type><title>Preparation and properties of in situ TiC/corundum–mullite electrically conductive ceramic</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jing, Wenpeng ; Ding, Donghai ; Xiao, Guoqing ; Jin, Endong ; Chong, Xiaochuan ; Ding, Yudong ; Gao, Kaiqiang ; Shi, Xiaoqi</creator><creatorcontrib>Jing, Wenpeng ; Ding, Donghai ; Xiao, Guoqing ; Jin, Endong ; Chong, Xiaochuan ; Ding, Yudong ; Gao, Kaiqiang ; Shi, Xiaoqi</creatorcontrib><description>In situ TiC/corundum–mullite electrically conductive ceramics were prepared by carbon‐bed sintering method using bauxite, clay and Ti3SiC2 powders as raw materials. The phase composition, microstructure, shrinkage, apparent porosity, bulk density, compressive strength, and resistivity of samples were investigated. The X‐ray diffraction results indicate that the TiC is completely generated by desilicidation reaction of the Ti3SiC2 at 1 300°C. When the sintering temperature is 1 300°C and Ti3SiC2 powder addition is 22 wt.%, the properties of the sample are optimum, with a longitudinal shrinkage of 2.04%, a radial shrinkage of 2.56%, an apparent porosity of 19.01%, a bulk density of 2.53 g/cm3, a compressive strength of 181 MPa, and a resistivity of 267 Ω·cm. The electrically conductive phase TiC is connected into a complete electrically conductive network. The shrinkages of samples decrease with increasing sintering temperature, which indicates that the samples expand due to secondary mullitization. The continuous electrically conductive network of TiC is destroyed. As the Ti3SiC2 powder addition increases from 14 to 20 wt.%, the resistivity of the samples decreases significantly, but the further increase in the Ti3SiC2 powder addition has no significant effect on the resistivity.</description><identifier>ISSN: 1546-542X</identifier><identifier>EISSN: 1744-7402</identifier><identifier>DOI: 10.1111/ijac.14754</identifier><language>eng</language><publisher>Malden: Wiley Subscription Services, Inc</publisher><subject>Bauxite ; Bayer process ; Bulk density ; Bulk sampling ; Compressive strength ; Continuous sintering ; Corundum ; Electrical resistivity ; electrically conductive ceramic ; in situ TiC ; Mullite ; Phase composition ; Porosity ; Raw materials ; resistivity ; Shrinkage ; Sintering ; Sintering (powder metallurgy) ; sintering temperature ; Titanium carbide ; Titanium silicon carbide</subject><ispartof>International journal of applied ceramic technology, 2024-09, Vol.21 (5), p.3109-3119</ispartof><rights>2024 The American Ceramic Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2604-45d389baa7c4b6e6aca86fc77d670ab44e2e19d605ce3b9af41c694722289ee63</cites><orcidid>0000-0002-3057-9880 ; 0000-0002-0143-1932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijac.14754$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijac.14754$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jing, Wenpeng</creatorcontrib><creatorcontrib>Ding, Donghai</creatorcontrib><creatorcontrib>Xiao, Guoqing</creatorcontrib><creatorcontrib>Jin, Endong</creatorcontrib><creatorcontrib>Chong, Xiaochuan</creatorcontrib><creatorcontrib>Ding, Yudong</creatorcontrib><creatorcontrib>Gao, Kaiqiang</creatorcontrib><creatorcontrib>Shi, Xiaoqi</creatorcontrib><title>Preparation and properties of in situ TiC/corundum–mullite electrically conductive ceramic</title><title>International journal of applied ceramic technology</title><description>In situ TiC/corundum–mullite electrically conductive ceramics were prepared by carbon‐bed sintering method using bauxite, clay and Ti3SiC2 powders as raw materials. The phase composition, microstructure, shrinkage, apparent porosity, bulk density, compressive strength, and resistivity of samples were investigated. The X‐ray diffraction results indicate that the TiC is completely generated by desilicidation reaction of the Ti3SiC2 at 1 300°C. When the sintering temperature is 1 300°C and Ti3SiC2 powder addition is 22 wt.%, the properties of the sample are optimum, with a longitudinal shrinkage of 2.04%, a radial shrinkage of 2.56%, an apparent porosity of 19.01%, a bulk density of 2.53 g/cm3, a compressive strength of 181 MPa, and a resistivity of 267 Ω·cm. The electrically conductive phase TiC is connected into a complete electrically conductive network. The shrinkages of samples decrease with increasing sintering temperature, which indicates that the samples expand due to secondary mullitization. The continuous electrically conductive network of TiC is destroyed. As the Ti3SiC2 powder addition increases from 14 to 20 wt.%, the resistivity of the samples decreases significantly, but the further increase in the Ti3SiC2 powder addition has no significant effect on the resistivity.</description><subject>Bauxite</subject><subject>Bayer process</subject><subject>Bulk density</subject><subject>Bulk sampling</subject><subject>Compressive strength</subject><subject>Continuous sintering</subject><subject>Corundum</subject><subject>Electrical resistivity</subject><subject>electrically conductive ceramic</subject><subject>in situ TiC</subject><subject>Mullite</subject><subject>Phase composition</subject><subject>Porosity</subject><subject>Raw materials</subject><subject>resistivity</subject><subject>Shrinkage</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>sintering temperature</subject><subject>Titanium carbide</subject><subject>Titanium silicon carbide</subject><issn>1546-542X</issn><issn>1744-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAQgIMouK5efIKAN6G7SZom7XEp_qws6GEFD0JI0ylk6Z9Jq-zNd_ANfRKz1rNzmYH55ocPoUtKFjTE0u60WVAuE36EZlRyHklO2HGoEy6ihLOXU3Tm_Y6QmMexmKHXJwe9dnqwXYt1W-LedT24wYLHXYVti70dRry1-dJ0bmzLsfn-_GrGurYDYKjBDM4aXdd7bLrQNYN9B2zA6caac3RS6drDxV-eo-fbm21-H20e79b5ahMZJgiPeFLGaVZoLQ0vBAhtdCoqI2UpJNEF58CAZqUgiYG4yHTFqREZl4yxNAMQ8RxdTXvD828j-EHtutG14aSKSSpJQlLCAnU9UcZ13juoVO9so91eUaIO9tTBnvq1F2A6wR-2hv0_pFo_rPJp5gevNXRa</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Jing, Wenpeng</creator><creator>Ding, Donghai</creator><creator>Xiao, Guoqing</creator><creator>Jin, Endong</creator><creator>Chong, Xiaochuan</creator><creator>Ding, Yudong</creator><creator>Gao, Kaiqiang</creator><creator>Shi, Xiaoqi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3057-9880</orcidid><orcidid>https://orcid.org/0000-0002-0143-1932</orcidid></search><sort><creationdate>202409</creationdate><title>Preparation and properties of in situ TiC/corundum–mullite electrically conductive ceramic</title><author>Jing, Wenpeng ; Ding, Donghai ; Xiao, Guoqing ; Jin, Endong ; Chong, Xiaochuan ; Ding, Yudong ; Gao, Kaiqiang ; Shi, Xiaoqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2604-45d389baa7c4b6e6aca86fc77d670ab44e2e19d605ce3b9af41c694722289ee63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bauxite</topic><topic>Bayer process</topic><topic>Bulk density</topic><topic>Bulk sampling</topic><topic>Compressive strength</topic><topic>Continuous sintering</topic><topic>Corundum</topic><topic>Electrical resistivity</topic><topic>electrically conductive ceramic</topic><topic>in situ TiC</topic><topic>Mullite</topic><topic>Phase composition</topic><topic>Porosity</topic><topic>Raw materials</topic><topic>resistivity</topic><topic>Shrinkage</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>sintering temperature</topic><topic>Titanium carbide</topic><topic>Titanium silicon carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Wenpeng</creatorcontrib><creatorcontrib>Ding, Donghai</creatorcontrib><creatorcontrib>Xiao, Guoqing</creatorcontrib><creatorcontrib>Jin, Endong</creatorcontrib><creatorcontrib>Chong, Xiaochuan</creatorcontrib><creatorcontrib>Ding, Yudong</creatorcontrib><creatorcontrib>Gao, Kaiqiang</creatorcontrib><creatorcontrib>Shi, Xiaoqi</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of applied ceramic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Wenpeng</au><au>Ding, Donghai</au><au>Xiao, Guoqing</au><au>Jin, Endong</au><au>Chong, Xiaochuan</au><au>Ding, Yudong</au><au>Gao, Kaiqiang</au><au>Shi, Xiaoqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and properties of in situ TiC/corundum–mullite electrically conductive ceramic</atitle><jtitle>International journal of applied ceramic technology</jtitle><date>2024-09</date><risdate>2024</risdate><volume>21</volume><issue>5</issue><spage>3109</spage><epage>3119</epage><pages>3109-3119</pages><issn>1546-542X</issn><eissn>1744-7402</eissn><abstract>In situ TiC/corundum–mullite electrically conductive ceramics were prepared by carbon‐bed sintering method using bauxite, clay and Ti3SiC2 powders as raw materials. The phase composition, microstructure, shrinkage, apparent porosity, bulk density, compressive strength, and resistivity of samples were investigated. The X‐ray diffraction results indicate that the TiC is completely generated by desilicidation reaction of the Ti3SiC2 at 1 300°C. When the sintering temperature is 1 300°C and Ti3SiC2 powder addition is 22 wt.%, the properties of the sample are optimum, with a longitudinal shrinkage of 2.04%, a radial shrinkage of 2.56%, an apparent porosity of 19.01%, a bulk density of 2.53 g/cm3, a compressive strength of 181 MPa, and a resistivity of 267 Ω·cm. The electrically conductive phase TiC is connected into a complete electrically conductive network. The shrinkages of samples decrease with increasing sintering temperature, which indicates that the samples expand due to secondary mullitization. The continuous electrically conductive network of TiC is destroyed. As the Ti3SiC2 powder addition increases from 14 to 20 wt.%, the resistivity of the samples decreases significantly, but the further increase in the Ti3SiC2 powder addition has no significant effect on the resistivity.</abstract><cop>Malden</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ijac.14754</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3057-9880</orcidid><orcidid>https://orcid.org/0000-0002-0143-1932</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1546-542X
ispartof International journal of applied ceramic technology, 2024-09, Vol.21 (5), p.3109-3119
issn 1546-542X
1744-7402
language eng
recordid cdi_proquest_journals_3087050802
source Wiley Online Library Journals Frontfile Complete
subjects Bauxite
Bayer process
Bulk density
Bulk sampling
Compressive strength
Continuous sintering
Corundum
Electrical resistivity
electrically conductive ceramic
in situ TiC
Mullite
Phase composition
Porosity
Raw materials
resistivity
Shrinkage
Sintering
Sintering (powder metallurgy)
sintering temperature
Titanium carbide
Titanium silicon carbide
title Preparation and properties of in situ TiC/corundum–mullite electrically conductive ceramic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20properties%20of%20in%20situ%20TiC/corundum%E2%80%93mullite%20electrically%20conductive%20ceramic&rft.jtitle=International%20journal%20of%20applied%20ceramic%20technology&rft.au=Jing,%20Wenpeng&rft.date=2024-09&rft.volume=21&rft.issue=5&rft.spage=3109&rft.epage=3119&rft.pages=3109-3119&rft.issn=1546-542X&rft.eissn=1744-7402&rft_id=info:doi/10.1111/ijac.14754&rft_dat=%3Cproquest_cross%3E3087050802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087050802&rft_id=info:pmid/&rfr_iscdi=true