Preparation and properties of in situ TiC/corundum–mullite electrically conductive ceramic
In situ TiC/corundum–mullite electrically conductive ceramics were prepared by carbon‐bed sintering method using bauxite, clay and Ti3SiC2 powders as raw materials. The phase composition, microstructure, shrinkage, apparent porosity, bulk density, compressive strength, and resistivity of samples wer...
Gespeichert in:
Veröffentlicht in: | International journal of applied ceramic technology 2024-09, Vol.21 (5), p.3109-3119 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3119 |
---|---|
container_issue | 5 |
container_start_page | 3109 |
container_title | International journal of applied ceramic technology |
container_volume | 21 |
creator | Jing, Wenpeng Ding, Donghai Xiao, Guoqing Jin, Endong Chong, Xiaochuan Ding, Yudong Gao, Kaiqiang Shi, Xiaoqi |
description | In situ TiC/corundum–mullite electrically conductive ceramics were prepared by carbon‐bed sintering method using bauxite, clay and Ti3SiC2 powders as raw materials. The phase composition, microstructure, shrinkage, apparent porosity, bulk density, compressive strength, and resistivity of samples were investigated. The X‐ray diffraction results indicate that the TiC is completely generated by desilicidation reaction of the Ti3SiC2 at 1 300°C. When the sintering temperature is 1 300°C and Ti3SiC2 powder addition is 22 wt.%, the properties of the sample are optimum, with a longitudinal shrinkage of 2.04%, a radial shrinkage of 2.56%, an apparent porosity of 19.01%, a bulk density of 2.53 g/cm3, a compressive strength of 181 MPa, and a resistivity of 267 Ω·cm. The electrically conductive phase TiC is connected into a complete electrically conductive network. The shrinkages of samples decrease with increasing sintering temperature, which indicates that the samples expand due to secondary mullitization. The continuous electrically conductive network of TiC is destroyed. As the Ti3SiC2 powder addition increases from 14 to 20 wt.%, the resistivity of the samples decreases significantly, but the further increase in the Ti3SiC2 powder addition has no significant effect on the resistivity. |
doi_str_mv | 10.1111/ijac.14754 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3087050802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087050802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2604-45d389baa7c4b6e6aca86fc77d670ab44e2e19d605ce3b9af41c694722289ee63</originalsourceid><addsrcrecordid>eNp9kM1KxDAQgIMouK5efIKAN6G7SZom7XEp_qws6GEFD0JI0ylk6Z9Jq-zNd_ANfRKz1rNzmYH55ocPoUtKFjTE0u60WVAuE36EZlRyHklO2HGoEy6ihLOXU3Tm_Y6QmMexmKHXJwe9dnqwXYt1W-LedT24wYLHXYVti70dRry1-dJ0bmzLsfn-_GrGurYDYKjBDM4aXdd7bLrQNYN9B2zA6caac3RS6drDxV-eo-fbm21-H20e79b5ahMZJgiPeFLGaVZoLQ0vBAhtdCoqI2UpJNEF58CAZqUgiYG4yHTFqREZl4yxNAMQ8RxdTXvD828j-EHtutG14aSKSSpJQlLCAnU9UcZ13juoVO9so91eUaIO9tTBnvq1F2A6wR-2hv0_pFo_rPJp5gevNXRa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087050802</pqid></control><display><type>article</type><title>Preparation and properties of in situ TiC/corundum–mullite electrically conductive ceramic</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jing, Wenpeng ; Ding, Donghai ; Xiao, Guoqing ; Jin, Endong ; Chong, Xiaochuan ; Ding, Yudong ; Gao, Kaiqiang ; Shi, Xiaoqi</creator><creatorcontrib>Jing, Wenpeng ; Ding, Donghai ; Xiao, Guoqing ; Jin, Endong ; Chong, Xiaochuan ; Ding, Yudong ; Gao, Kaiqiang ; Shi, Xiaoqi</creatorcontrib><description>In situ TiC/corundum–mullite electrically conductive ceramics were prepared by carbon‐bed sintering method using bauxite, clay and Ti3SiC2 powders as raw materials. The phase composition, microstructure, shrinkage, apparent porosity, bulk density, compressive strength, and resistivity of samples were investigated. The X‐ray diffraction results indicate that the TiC is completely generated by desilicidation reaction of the Ti3SiC2 at 1 300°C. When the sintering temperature is 1 300°C and Ti3SiC2 powder addition is 22 wt.%, the properties of the sample are optimum, with a longitudinal shrinkage of 2.04%, a radial shrinkage of 2.56%, an apparent porosity of 19.01%, a bulk density of 2.53 g/cm3, a compressive strength of 181 MPa, and a resistivity of 267 Ω·cm. The electrically conductive phase TiC is connected into a complete electrically conductive network. The shrinkages of samples decrease with increasing sintering temperature, which indicates that the samples expand due to secondary mullitization. The continuous electrically conductive network of TiC is destroyed. As the Ti3SiC2 powder addition increases from 14 to 20 wt.%, the resistivity of the samples decreases significantly, but the further increase in the Ti3SiC2 powder addition has no significant effect on the resistivity.</description><identifier>ISSN: 1546-542X</identifier><identifier>EISSN: 1744-7402</identifier><identifier>DOI: 10.1111/ijac.14754</identifier><language>eng</language><publisher>Malden: Wiley Subscription Services, Inc</publisher><subject>Bauxite ; Bayer process ; Bulk density ; Bulk sampling ; Compressive strength ; Continuous sintering ; Corundum ; Electrical resistivity ; electrically conductive ceramic ; in situ TiC ; Mullite ; Phase composition ; Porosity ; Raw materials ; resistivity ; Shrinkage ; Sintering ; Sintering (powder metallurgy) ; sintering temperature ; Titanium carbide ; Titanium silicon carbide</subject><ispartof>International journal of applied ceramic technology, 2024-09, Vol.21 (5), p.3109-3119</ispartof><rights>2024 The American Ceramic Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2604-45d389baa7c4b6e6aca86fc77d670ab44e2e19d605ce3b9af41c694722289ee63</cites><orcidid>0000-0002-3057-9880 ; 0000-0002-0143-1932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijac.14754$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijac.14754$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jing, Wenpeng</creatorcontrib><creatorcontrib>Ding, Donghai</creatorcontrib><creatorcontrib>Xiao, Guoqing</creatorcontrib><creatorcontrib>Jin, Endong</creatorcontrib><creatorcontrib>Chong, Xiaochuan</creatorcontrib><creatorcontrib>Ding, Yudong</creatorcontrib><creatorcontrib>Gao, Kaiqiang</creatorcontrib><creatorcontrib>Shi, Xiaoqi</creatorcontrib><title>Preparation and properties of in situ TiC/corundum–mullite electrically conductive ceramic</title><title>International journal of applied ceramic technology</title><description>In situ TiC/corundum–mullite electrically conductive ceramics were prepared by carbon‐bed sintering method using bauxite, clay and Ti3SiC2 powders as raw materials. The phase composition, microstructure, shrinkage, apparent porosity, bulk density, compressive strength, and resistivity of samples were investigated. The X‐ray diffraction results indicate that the TiC is completely generated by desilicidation reaction of the Ti3SiC2 at 1 300°C. When the sintering temperature is 1 300°C and Ti3SiC2 powder addition is 22 wt.%, the properties of the sample are optimum, with a longitudinal shrinkage of 2.04%, a radial shrinkage of 2.56%, an apparent porosity of 19.01%, a bulk density of 2.53 g/cm3, a compressive strength of 181 MPa, and a resistivity of 267 Ω·cm. The electrically conductive phase TiC is connected into a complete electrically conductive network. The shrinkages of samples decrease with increasing sintering temperature, which indicates that the samples expand due to secondary mullitization. The continuous electrically conductive network of TiC is destroyed. As the Ti3SiC2 powder addition increases from 14 to 20 wt.%, the resistivity of the samples decreases significantly, but the further increase in the Ti3SiC2 powder addition has no significant effect on the resistivity.</description><subject>Bauxite</subject><subject>Bayer process</subject><subject>Bulk density</subject><subject>Bulk sampling</subject><subject>Compressive strength</subject><subject>Continuous sintering</subject><subject>Corundum</subject><subject>Electrical resistivity</subject><subject>electrically conductive ceramic</subject><subject>in situ TiC</subject><subject>Mullite</subject><subject>Phase composition</subject><subject>Porosity</subject><subject>Raw materials</subject><subject>resistivity</subject><subject>Shrinkage</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>sintering temperature</subject><subject>Titanium carbide</subject><subject>Titanium silicon carbide</subject><issn>1546-542X</issn><issn>1744-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAQgIMouK5efIKAN6G7SZom7XEp_qws6GEFD0JI0ylk6Z9Jq-zNd_ANfRKz1rNzmYH55ocPoUtKFjTE0u60WVAuE36EZlRyHklO2HGoEy6ihLOXU3Tm_Y6QmMexmKHXJwe9dnqwXYt1W-LedT24wYLHXYVti70dRry1-dJ0bmzLsfn-_GrGurYDYKjBDM4aXdd7bLrQNYN9B2zA6caac3RS6drDxV-eo-fbm21-H20e79b5ahMZJgiPeFLGaVZoLQ0vBAhtdCoqI2UpJNEF58CAZqUgiYG4yHTFqREZl4yxNAMQ8RxdTXvD828j-EHtutG14aSKSSpJQlLCAnU9UcZ13juoVO9so91eUaIO9tTBnvq1F2A6wR-2hv0_pFo_rPJp5gevNXRa</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Jing, Wenpeng</creator><creator>Ding, Donghai</creator><creator>Xiao, Guoqing</creator><creator>Jin, Endong</creator><creator>Chong, Xiaochuan</creator><creator>Ding, Yudong</creator><creator>Gao, Kaiqiang</creator><creator>Shi, Xiaoqi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3057-9880</orcidid><orcidid>https://orcid.org/0000-0002-0143-1932</orcidid></search><sort><creationdate>202409</creationdate><title>Preparation and properties of in situ TiC/corundum–mullite electrically conductive ceramic</title><author>Jing, Wenpeng ; Ding, Donghai ; Xiao, Guoqing ; Jin, Endong ; Chong, Xiaochuan ; Ding, Yudong ; Gao, Kaiqiang ; Shi, Xiaoqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2604-45d389baa7c4b6e6aca86fc77d670ab44e2e19d605ce3b9af41c694722289ee63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bauxite</topic><topic>Bayer process</topic><topic>Bulk density</topic><topic>Bulk sampling</topic><topic>Compressive strength</topic><topic>Continuous sintering</topic><topic>Corundum</topic><topic>Electrical resistivity</topic><topic>electrically conductive ceramic</topic><topic>in situ TiC</topic><topic>Mullite</topic><topic>Phase composition</topic><topic>Porosity</topic><topic>Raw materials</topic><topic>resistivity</topic><topic>Shrinkage</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>sintering temperature</topic><topic>Titanium carbide</topic><topic>Titanium silicon carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Wenpeng</creatorcontrib><creatorcontrib>Ding, Donghai</creatorcontrib><creatorcontrib>Xiao, Guoqing</creatorcontrib><creatorcontrib>Jin, Endong</creatorcontrib><creatorcontrib>Chong, Xiaochuan</creatorcontrib><creatorcontrib>Ding, Yudong</creatorcontrib><creatorcontrib>Gao, Kaiqiang</creatorcontrib><creatorcontrib>Shi, Xiaoqi</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of applied ceramic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Wenpeng</au><au>Ding, Donghai</au><au>Xiao, Guoqing</au><au>Jin, Endong</au><au>Chong, Xiaochuan</au><au>Ding, Yudong</au><au>Gao, Kaiqiang</au><au>Shi, Xiaoqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and properties of in situ TiC/corundum–mullite electrically conductive ceramic</atitle><jtitle>International journal of applied ceramic technology</jtitle><date>2024-09</date><risdate>2024</risdate><volume>21</volume><issue>5</issue><spage>3109</spage><epage>3119</epage><pages>3109-3119</pages><issn>1546-542X</issn><eissn>1744-7402</eissn><abstract>In situ TiC/corundum–mullite electrically conductive ceramics were prepared by carbon‐bed sintering method using bauxite, clay and Ti3SiC2 powders as raw materials. The phase composition, microstructure, shrinkage, apparent porosity, bulk density, compressive strength, and resistivity of samples were investigated. The X‐ray diffraction results indicate that the TiC is completely generated by desilicidation reaction of the Ti3SiC2 at 1 300°C. When the sintering temperature is 1 300°C and Ti3SiC2 powder addition is 22 wt.%, the properties of the sample are optimum, with a longitudinal shrinkage of 2.04%, a radial shrinkage of 2.56%, an apparent porosity of 19.01%, a bulk density of 2.53 g/cm3, a compressive strength of 181 MPa, and a resistivity of 267 Ω·cm. The electrically conductive phase TiC is connected into a complete electrically conductive network. The shrinkages of samples decrease with increasing sintering temperature, which indicates that the samples expand due to secondary mullitization. The continuous electrically conductive network of TiC is destroyed. As the Ti3SiC2 powder addition increases from 14 to 20 wt.%, the resistivity of the samples decreases significantly, but the further increase in the Ti3SiC2 powder addition has no significant effect on the resistivity.</abstract><cop>Malden</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ijac.14754</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3057-9880</orcidid><orcidid>https://orcid.org/0000-0002-0143-1932</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1546-542X |
ispartof | International journal of applied ceramic technology, 2024-09, Vol.21 (5), p.3109-3119 |
issn | 1546-542X 1744-7402 |
language | eng |
recordid | cdi_proquest_journals_3087050802 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bauxite Bayer process Bulk density Bulk sampling Compressive strength Continuous sintering Corundum Electrical resistivity electrically conductive ceramic in situ TiC Mullite Phase composition Porosity Raw materials resistivity Shrinkage Sintering Sintering (powder metallurgy) sintering temperature Titanium carbide Titanium silicon carbide |
title | Preparation and properties of in situ TiC/corundum–mullite electrically conductive ceramic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20properties%20of%20in%20situ%20TiC/corundum%E2%80%93mullite%20electrically%20conductive%20ceramic&rft.jtitle=International%20journal%20of%20applied%20ceramic%20technology&rft.au=Jing,%20Wenpeng&rft.date=2024-09&rft.volume=21&rft.issue=5&rft.spage=3109&rft.epage=3119&rft.pages=3109-3119&rft.issn=1546-542X&rft.eissn=1744-7402&rft_id=info:doi/10.1111/ijac.14754&rft_dat=%3Cproquest_cross%3E3087050802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087050802&rft_id=info:pmid/&rfr_iscdi=true |