Introducing Spin-coated ZnO Anti-reflection Coating for CdS/CdTe Solar Cells

Second-generation solar cells, commonly known as thin-film solar cells, have emerged as promising alternatives to traditional silicon-based first-generation photovoltaic cells. The superstrate configuration is the most widely used structure for constructing thin-film solar cells. Nevertheless, light...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2024-09, Vol.53 (9), p.5298-5305
Hauptverfasser: Wijesingha, J. R., Gajanayake, G. K. U. P., Wickramasinghe, W. A. V. U., Damayanthi, R. M. T., De Silva, G. I. P., De Silva, D. S. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5305
container_issue 9
container_start_page 5298
container_title Journal of electronic materials
container_volume 53
creator Wijesingha, J. R.
Gajanayake, G. K. U. P.
Wickramasinghe, W. A. V. U.
Damayanthi, R. M. T.
De Silva, G. I. P.
De Silva, D. S. M.
description Second-generation solar cells, commonly known as thin-film solar cells, have emerged as promising alternatives to traditional silicon-based first-generation photovoltaic cells. The superstrate configuration is the most widely used structure for constructing thin-film solar cells. Nevertheless, light reflection from the front cover glass surface significantly contributes to energy losses in thin-film solar cells. In this study, a ZnO anti-reflection (AR) coating was introduced using the spin coating technique on a glass/FTO/CdS/CdTe/Cu/Au substrate to improve the power conversion efficiency of the solar cell by reducing front-surface reflectance. The ZnO layer deposited at 3000 rpm in 15 s showed the minimum reflectance and higher transmittance over a wavelength range of 500–900 nm. Further, the thickness of the film under optimal conditions was 63.32 nm, which is compatible with the ideal theoretical AR coating thickness of 65 nm. Comparing the device performance of the CdS/CdTe solar cell with and without AR coating, all tested devices showed an average short-circuit current density improvement of 6.8% and overall enhancement in power conversion efficiency of 9.3%.
doi_str_mv 10.1007/s11664-024-11260-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3087046953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087046953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ab7efb7ba411b6e4c105966a7f187f7d7c44172f1391010dd346ce93a357c9fc3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz3FnmjRpj0vxY2FhD7uCeAltmixdarIm3YP_3mgFb56GYZ53hnkIuUW4RwC5iIhCcAo5p4i5AApnZIYFZxRL8XpOZsAE0iJnxSW5ivEAgAWWOCPrlRuD7066d_tse-wd1b4ZTZe9uU22dGNPg7GD0WPvXVan0Tdnfcjqbruou53Jtn5oUmuGIV6TC9sM0dz81jl5eXzY1c90vXla1cs11bmEkTatNLaVbcMRW2G4RigqIRppsZRWdlJzjjK3yCoEhK5jXGhTsYYVUldWszm5m_Yeg_84mTiqgz8Fl04qBqUELqqCJSqfKB18jOkNdQz9exM-FYL6tqYmaypZUz_WFKQQm0IxwW5vwt_qf1Jfv3VuJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087046953</pqid></control><display><type>article</type><title>Introducing Spin-coated ZnO Anti-reflection Coating for CdS/CdTe Solar Cells</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wijesingha, J. R. ; Gajanayake, G. K. U. P. ; Wickramasinghe, W. A. V. U. ; Damayanthi, R. M. T. ; De Silva, G. I. P. ; De Silva, D. S. M.</creator><creatorcontrib>Wijesingha, J. R. ; Gajanayake, G. K. U. P. ; Wickramasinghe, W. A. V. U. ; Damayanthi, R. M. T. ; De Silva, G. I. P. ; De Silva, D. S. M.</creatorcontrib><description>Second-generation solar cells, commonly known as thin-film solar cells, have emerged as promising alternatives to traditional silicon-based first-generation photovoltaic cells. The superstrate configuration is the most widely used structure for constructing thin-film solar cells. Nevertheless, light reflection from the front cover glass surface significantly contributes to energy losses in thin-film solar cells. In this study, a ZnO anti-reflection (AR) coating was introduced using the spin coating technique on a glass/FTO/CdS/CdTe/Cu/Au substrate to improve the power conversion efficiency of the solar cell by reducing front-surface reflectance. The ZnO layer deposited at 3000 rpm in 15 s showed the minimum reflectance and higher transmittance over a wavelength range of 500–900 nm. Further, the thickness of the film under optimal conditions was 63.32 nm, which is compatible with the ideal theoretical AR coating thickness of 65 nm. Comparing the device performance of the CdS/CdTe solar cell with and without AR coating, all tested devices showed an average short-circuit current density improvement of 6.8% and overall enhancement in power conversion efficiency of 9.3%.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-024-11260-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alternative energy sources ; Antireflection coatings ; Cadmium sulfide ; Cadmium tellurides ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Electronics and Microelectronics ; Energy conversion efficiency ; Gold ; Instrumentation ; Light reflection ; Materials Science ; Optical and Electronic Materials ; Original Research Article ; Photovoltaic cells ; Reflectance ; Short circuit currents ; Solar cells ; Solid State Physics ; Spin coating ; Substrates ; Thickness ; Thin films ; Zinc oxide</subject><ispartof>Journal of electronic materials, 2024-09, Vol.53 (9), p.5298-5305</ispartof><rights>The Minerals, Metals &amp; Materials Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ab7efb7ba411b6e4c105966a7f187f7d7c44172f1391010dd346ce93a357c9fc3</cites><orcidid>0000-0002-7095-1173 ; 0000-0002-8792-3494 ; 0009-0001-9638-4111 ; 0000-0002-5896-4190 ; 0000-0001-9407-8455 ; 0000-0002-4587-7469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-024-11260-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-024-11260-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wijesingha, J. R.</creatorcontrib><creatorcontrib>Gajanayake, G. K. U. P.</creatorcontrib><creatorcontrib>Wickramasinghe, W. A. V. U.</creatorcontrib><creatorcontrib>Damayanthi, R. M. T.</creatorcontrib><creatorcontrib>De Silva, G. I. P.</creatorcontrib><creatorcontrib>De Silva, D. S. M.</creatorcontrib><title>Introducing Spin-coated ZnO Anti-reflection Coating for CdS/CdTe Solar Cells</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>Second-generation solar cells, commonly known as thin-film solar cells, have emerged as promising alternatives to traditional silicon-based first-generation photovoltaic cells. The superstrate configuration is the most widely used structure for constructing thin-film solar cells. Nevertheless, light reflection from the front cover glass surface significantly contributes to energy losses in thin-film solar cells. In this study, a ZnO anti-reflection (AR) coating was introduced using the spin coating technique on a glass/FTO/CdS/CdTe/Cu/Au substrate to improve the power conversion efficiency of the solar cell by reducing front-surface reflectance. The ZnO layer deposited at 3000 rpm in 15 s showed the minimum reflectance and higher transmittance over a wavelength range of 500–900 nm. Further, the thickness of the film under optimal conditions was 63.32 nm, which is compatible with the ideal theoretical AR coating thickness of 65 nm. Comparing the device performance of the CdS/CdTe solar cell with and without AR coating, all tested devices showed an average short-circuit current density improvement of 6.8% and overall enhancement in power conversion efficiency of 9.3%.</description><subject>Alternative energy sources</subject><subject>Antireflection coatings</subject><subject>Cadmium sulfide</subject><subject>Cadmium tellurides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Electronics and Microelectronics</subject><subject>Energy conversion efficiency</subject><subject>Gold</subject><subject>Instrumentation</subject><subject>Light reflection</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Photovoltaic cells</subject><subject>Reflectance</subject><subject>Short circuit currents</subject><subject>Solar cells</subject><subject>Solid State Physics</subject><subject>Spin coating</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Zinc oxide</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz3FnmjRpj0vxY2FhD7uCeAltmixdarIm3YP_3mgFb56GYZ53hnkIuUW4RwC5iIhCcAo5p4i5AApnZIYFZxRL8XpOZsAE0iJnxSW5ivEAgAWWOCPrlRuD7066d_tse-wd1b4ZTZe9uU22dGNPg7GD0WPvXVan0Tdnfcjqbruou53Jtn5oUmuGIV6TC9sM0dz81jl5eXzY1c90vXla1cs11bmEkTatNLaVbcMRW2G4RigqIRppsZRWdlJzjjK3yCoEhK5jXGhTsYYVUldWszm5m_Yeg_84mTiqgz8Fl04qBqUELqqCJSqfKB18jOkNdQz9exM-FYL6tqYmaypZUz_WFKQQm0IxwW5vwt_qf1Jfv3VuJA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Wijesingha, J. R.</creator><creator>Gajanayake, G. K. U. P.</creator><creator>Wickramasinghe, W. A. V. U.</creator><creator>Damayanthi, R. M. T.</creator><creator>De Silva, G. I. P.</creator><creator>De Silva, D. S. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7095-1173</orcidid><orcidid>https://orcid.org/0000-0002-8792-3494</orcidid><orcidid>https://orcid.org/0009-0001-9638-4111</orcidid><orcidid>https://orcid.org/0000-0002-5896-4190</orcidid><orcidid>https://orcid.org/0000-0001-9407-8455</orcidid><orcidid>https://orcid.org/0000-0002-4587-7469</orcidid></search><sort><creationdate>20240901</creationdate><title>Introducing Spin-coated ZnO Anti-reflection Coating for CdS/CdTe Solar Cells</title><author>Wijesingha, J. R. ; Gajanayake, G. K. U. P. ; Wickramasinghe, W. A. V. U. ; Damayanthi, R. M. T. ; De Silva, G. I. P. ; De Silva, D. S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ab7efb7ba411b6e4c105966a7f187f7d7c44172f1391010dd346ce93a357c9fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alternative energy sources</topic><topic>Antireflection coatings</topic><topic>Cadmium sulfide</topic><topic>Cadmium tellurides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Electronics and Microelectronics</topic><topic>Energy conversion efficiency</topic><topic>Gold</topic><topic>Instrumentation</topic><topic>Light reflection</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Photovoltaic cells</topic><topic>Reflectance</topic><topic>Short circuit currents</topic><topic>Solar cells</topic><topic>Solid State Physics</topic><topic>Spin coating</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wijesingha, J. R.</creatorcontrib><creatorcontrib>Gajanayake, G. K. U. P.</creatorcontrib><creatorcontrib>Wickramasinghe, W. A. V. U.</creatorcontrib><creatorcontrib>Damayanthi, R. M. T.</creatorcontrib><creatorcontrib>De Silva, G. I. P.</creatorcontrib><creatorcontrib>De Silva, D. S. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wijesingha, J. R.</au><au>Gajanayake, G. K. U. P.</au><au>Wickramasinghe, W. A. V. U.</au><au>Damayanthi, R. M. T.</au><au>De Silva, G. I. P.</au><au>De Silva, D. S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introducing Spin-coated ZnO Anti-reflection Coating for CdS/CdTe Solar Cells</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>53</volume><issue>9</issue><spage>5298</spage><epage>5305</epage><pages>5298-5305</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Second-generation solar cells, commonly known as thin-film solar cells, have emerged as promising alternatives to traditional silicon-based first-generation photovoltaic cells. The superstrate configuration is the most widely used structure for constructing thin-film solar cells. Nevertheless, light reflection from the front cover glass surface significantly contributes to energy losses in thin-film solar cells. In this study, a ZnO anti-reflection (AR) coating was introduced using the spin coating technique on a glass/FTO/CdS/CdTe/Cu/Au substrate to improve the power conversion efficiency of the solar cell by reducing front-surface reflectance. The ZnO layer deposited at 3000 rpm in 15 s showed the minimum reflectance and higher transmittance over a wavelength range of 500–900 nm. Further, the thickness of the film under optimal conditions was 63.32 nm, which is compatible with the ideal theoretical AR coating thickness of 65 nm. Comparing the device performance of the CdS/CdTe solar cell with and without AR coating, all tested devices showed an average short-circuit current density improvement of 6.8% and overall enhancement in power conversion efficiency of 9.3%.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-024-11260-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7095-1173</orcidid><orcidid>https://orcid.org/0000-0002-8792-3494</orcidid><orcidid>https://orcid.org/0009-0001-9638-4111</orcidid><orcidid>https://orcid.org/0000-0002-5896-4190</orcidid><orcidid>https://orcid.org/0000-0001-9407-8455</orcidid><orcidid>https://orcid.org/0000-0002-4587-7469</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2024-09, Vol.53 (9), p.5298-5305
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_3087046953
source SpringerLink Journals - AutoHoldings
subjects Alternative energy sources
Antireflection coatings
Cadmium sulfide
Cadmium tellurides
Characterization and Evaluation of Materials
Chemistry and Materials Science
Copper
Electronics and Microelectronics
Energy conversion efficiency
Gold
Instrumentation
Light reflection
Materials Science
Optical and Electronic Materials
Original Research Article
Photovoltaic cells
Reflectance
Short circuit currents
Solar cells
Solid State Physics
Spin coating
Substrates
Thickness
Thin films
Zinc oxide
title Introducing Spin-coated ZnO Anti-reflection Coating for CdS/CdTe Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introducing%20Spin-coated%20ZnO%20Anti-reflection%20Coating%20for%20CdS/CdTe%20Solar%20Cells&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Wijesingha,%20J.%20R.&rft.date=2024-09-01&rft.volume=53&rft.issue=9&rft.spage=5298&rft.epage=5305&rft.pages=5298-5305&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-024-11260-0&rft_dat=%3Cproquest_cross%3E3087046953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087046953&rft_id=info:pmid/&rfr_iscdi=true