Introducing Spin-coated ZnO Anti-reflection Coating for CdS/CdTe Solar Cells
Second-generation solar cells, commonly known as thin-film solar cells, have emerged as promising alternatives to traditional silicon-based first-generation photovoltaic cells. The superstrate configuration is the most widely used structure for constructing thin-film solar cells. Nevertheless, light...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2024-09, Vol.53 (9), p.5298-5305 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5305 |
---|---|
container_issue | 9 |
container_start_page | 5298 |
container_title | Journal of electronic materials |
container_volume | 53 |
creator | Wijesingha, J. R. Gajanayake, G. K. U. P. Wickramasinghe, W. A. V. U. Damayanthi, R. M. T. De Silva, G. I. P. De Silva, D. S. M. |
description | Second-generation solar cells, commonly known as thin-film solar cells, have emerged as promising alternatives to traditional silicon-based first-generation photovoltaic cells. The superstrate configuration is the most widely used structure for constructing thin-film solar cells. Nevertheless, light reflection from the front cover glass surface significantly contributes to energy losses in thin-film solar cells. In this study, a ZnO anti-reflection (AR) coating was introduced using the spin coating technique on a glass/FTO/CdS/CdTe/Cu/Au substrate to improve the power conversion efficiency of the solar cell by reducing front-surface reflectance. The ZnO layer deposited at 3000 rpm in 15 s showed the minimum reflectance and higher transmittance over a wavelength range of 500–900 nm. Further, the thickness of the film under optimal conditions was 63.32 nm, which is compatible with the ideal theoretical AR coating thickness of 65 nm. Comparing the device performance of the CdS/CdTe solar cell with and without AR coating, all tested devices showed an average short-circuit current density improvement of 6.8% and overall enhancement in power conversion efficiency of 9.3%. |
doi_str_mv | 10.1007/s11664-024-11260-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3087046953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087046953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ab7efb7ba411b6e4c105966a7f187f7d7c44172f1391010dd346ce93a357c9fc3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz3FnmjRpj0vxY2FhD7uCeAltmixdarIm3YP_3mgFb56GYZ53hnkIuUW4RwC5iIhCcAo5p4i5AApnZIYFZxRL8XpOZsAE0iJnxSW5ivEAgAWWOCPrlRuD7066d_tse-wd1b4ZTZe9uU22dGNPg7GD0WPvXVan0Tdnfcjqbruou53Jtn5oUmuGIV6TC9sM0dz81jl5eXzY1c90vXla1cs11bmEkTatNLaVbcMRW2G4RigqIRppsZRWdlJzjjK3yCoEhK5jXGhTsYYVUldWszm5m_Yeg_84mTiqgz8Fl04qBqUELqqCJSqfKB18jOkNdQz9exM-FYL6tqYmaypZUz_WFKQQm0IxwW5vwt_qf1Jfv3VuJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087046953</pqid></control><display><type>article</type><title>Introducing Spin-coated ZnO Anti-reflection Coating for CdS/CdTe Solar Cells</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wijesingha, J. R. ; Gajanayake, G. K. U. P. ; Wickramasinghe, W. A. V. U. ; Damayanthi, R. M. T. ; De Silva, G. I. P. ; De Silva, D. S. M.</creator><creatorcontrib>Wijesingha, J. R. ; Gajanayake, G. K. U. P. ; Wickramasinghe, W. A. V. U. ; Damayanthi, R. M. T. ; De Silva, G. I. P. ; De Silva, D. S. M.</creatorcontrib><description>Second-generation solar cells, commonly known as thin-film solar cells, have emerged as promising alternatives to traditional silicon-based first-generation photovoltaic cells. The superstrate configuration is the most widely used structure for constructing thin-film solar cells. Nevertheless, light reflection from the front cover glass surface significantly contributes to energy losses in thin-film solar cells. In this study, a ZnO anti-reflection (AR) coating was introduced using the spin coating technique on a glass/FTO/CdS/CdTe/Cu/Au substrate to improve the power conversion efficiency of the solar cell by reducing front-surface reflectance. The ZnO layer deposited at 3000 rpm in 15 s showed the minimum reflectance and higher transmittance over a wavelength range of 500–900 nm. Further, the thickness of the film under optimal conditions was 63.32 nm, which is compatible with the ideal theoretical AR coating thickness of 65 nm. Comparing the device performance of the CdS/CdTe solar cell with and without AR coating, all tested devices showed an average short-circuit current density improvement of 6.8% and overall enhancement in power conversion efficiency of 9.3%.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-024-11260-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alternative energy sources ; Antireflection coatings ; Cadmium sulfide ; Cadmium tellurides ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Electronics and Microelectronics ; Energy conversion efficiency ; Gold ; Instrumentation ; Light reflection ; Materials Science ; Optical and Electronic Materials ; Original Research Article ; Photovoltaic cells ; Reflectance ; Short circuit currents ; Solar cells ; Solid State Physics ; Spin coating ; Substrates ; Thickness ; Thin films ; Zinc oxide</subject><ispartof>Journal of electronic materials, 2024-09, Vol.53 (9), p.5298-5305</ispartof><rights>The Minerals, Metals & Materials Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ab7efb7ba411b6e4c105966a7f187f7d7c44172f1391010dd346ce93a357c9fc3</cites><orcidid>0000-0002-7095-1173 ; 0000-0002-8792-3494 ; 0009-0001-9638-4111 ; 0000-0002-5896-4190 ; 0000-0001-9407-8455 ; 0000-0002-4587-7469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-024-11260-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-024-11260-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wijesingha, J. R.</creatorcontrib><creatorcontrib>Gajanayake, G. K. U. P.</creatorcontrib><creatorcontrib>Wickramasinghe, W. A. V. U.</creatorcontrib><creatorcontrib>Damayanthi, R. M. T.</creatorcontrib><creatorcontrib>De Silva, G. I. P.</creatorcontrib><creatorcontrib>De Silva, D. S. M.</creatorcontrib><title>Introducing Spin-coated ZnO Anti-reflection Coating for CdS/CdTe Solar Cells</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>Second-generation solar cells, commonly known as thin-film solar cells, have emerged as promising alternatives to traditional silicon-based first-generation photovoltaic cells. The superstrate configuration is the most widely used structure for constructing thin-film solar cells. Nevertheless, light reflection from the front cover glass surface significantly contributes to energy losses in thin-film solar cells. In this study, a ZnO anti-reflection (AR) coating was introduced using the spin coating technique on a glass/FTO/CdS/CdTe/Cu/Au substrate to improve the power conversion efficiency of the solar cell by reducing front-surface reflectance. The ZnO layer deposited at 3000 rpm in 15 s showed the minimum reflectance and higher transmittance over a wavelength range of 500–900 nm. Further, the thickness of the film under optimal conditions was 63.32 nm, which is compatible with the ideal theoretical AR coating thickness of 65 nm. Comparing the device performance of the CdS/CdTe solar cell with and without AR coating, all tested devices showed an average short-circuit current density improvement of 6.8% and overall enhancement in power conversion efficiency of 9.3%.</description><subject>Alternative energy sources</subject><subject>Antireflection coatings</subject><subject>Cadmium sulfide</subject><subject>Cadmium tellurides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Electronics and Microelectronics</subject><subject>Energy conversion efficiency</subject><subject>Gold</subject><subject>Instrumentation</subject><subject>Light reflection</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Photovoltaic cells</subject><subject>Reflectance</subject><subject>Short circuit currents</subject><subject>Solar cells</subject><subject>Solid State Physics</subject><subject>Spin coating</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Zinc oxide</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz3FnmjRpj0vxY2FhD7uCeAltmixdarIm3YP_3mgFb56GYZ53hnkIuUW4RwC5iIhCcAo5p4i5AApnZIYFZxRL8XpOZsAE0iJnxSW5ivEAgAWWOCPrlRuD7066d_tse-wd1b4ZTZe9uU22dGNPg7GD0WPvXVan0Tdnfcjqbruou53Jtn5oUmuGIV6TC9sM0dz81jl5eXzY1c90vXla1cs11bmEkTatNLaVbcMRW2G4RigqIRppsZRWdlJzjjK3yCoEhK5jXGhTsYYVUldWszm5m_Yeg_84mTiqgz8Fl04qBqUELqqCJSqfKB18jOkNdQz9exM-FYL6tqYmaypZUz_WFKQQm0IxwW5vwt_qf1Jfv3VuJA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Wijesingha, J. R.</creator><creator>Gajanayake, G. K. U. P.</creator><creator>Wickramasinghe, W. A. V. U.</creator><creator>Damayanthi, R. M. T.</creator><creator>De Silva, G. I. P.</creator><creator>De Silva, D. S. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7095-1173</orcidid><orcidid>https://orcid.org/0000-0002-8792-3494</orcidid><orcidid>https://orcid.org/0009-0001-9638-4111</orcidid><orcidid>https://orcid.org/0000-0002-5896-4190</orcidid><orcidid>https://orcid.org/0000-0001-9407-8455</orcidid><orcidid>https://orcid.org/0000-0002-4587-7469</orcidid></search><sort><creationdate>20240901</creationdate><title>Introducing Spin-coated ZnO Anti-reflection Coating for CdS/CdTe Solar Cells</title><author>Wijesingha, J. R. ; Gajanayake, G. K. U. P. ; Wickramasinghe, W. A. V. U. ; Damayanthi, R. M. T. ; De Silva, G. I. P. ; De Silva, D. S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ab7efb7ba411b6e4c105966a7f187f7d7c44172f1391010dd346ce93a357c9fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alternative energy sources</topic><topic>Antireflection coatings</topic><topic>Cadmium sulfide</topic><topic>Cadmium tellurides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Electronics and Microelectronics</topic><topic>Energy conversion efficiency</topic><topic>Gold</topic><topic>Instrumentation</topic><topic>Light reflection</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Photovoltaic cells</topic><topic>Reflectance</topic><topic>Short circuit currents</topic><topic>Solar cells</topic><topic>Solid State Physics</topic><topic>Spin coating</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wijesingha, J. R.</creatorcontrib><creatorcontrib>Gajanayake, G. K. U. P.</creatorcontrib><creatorcontrib>Wickramasinghe, W. A. V. U.</creatorcontrib><creatorcontrib>Damayanthi, R. M. T.</creatorcontrib><creatorcontrib>De Silva, G. I. P.</creatorcontrib><creatorcontrib>De Silva, D. S. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wijesingha, J. R.</au><au>Gajanayake, G. K. U. P.</au><au>Wickramasinghe, W. A. V. U.</au><au>Damayanthi, R. M. T.</au><au>De Silva, G. I. P.</au><au>De Silva, D. S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introducing Spin-coated ZnO Anti-reflection Coating for CdS/CdTe Solar Cells</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>53</volume><issue>9</issue><spage>5298</spage><epage>5305</epage><pages>5298-5305</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Second-generation solar cells, commonly known as thin-film solar cells, have emerged as promising alternatives to traditional silicon-based first-generation photovoltaic cells. The superstrate configuration is the most widely used structure for constructing thin-film solar cells. Nevertheless, light reflection from the front cover glass surface significantly contributes to energy losses in thin-film solar cells. In this study, a ZnO anti-reflection (AR) coating was introduced using the spin coating technique on a glass/FTO/CdS/CdTe/Cu/Au substrate to improve the power conversion efficiency of the solar cell by reducing front-surface reflectance. The ZnO layer deposited at 3000 rpm in 15 s showed the minimum reflectance and higher transmittance over a wavelength range of 500–900 nm. Further, the thickness of the film under optimal conditions was 63.32 nm, which is compatible with the ideal theoretical AR coating thickness of 65 nm. Comparing the device performance of the CdS/CdTe solar cell with and without AR coating, all tested devices showed an average short-circuit current density improvement of 6.8% and overall enhancement in power conversion efficiency of 9.3%.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-024-11260-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7095-1173</orcidid><orcidid>https://orcid.org/0000-0002-8792-3494</orcidid><orcidid>https://orcid.org/0009-0001-9638-4111</orcidid><orcidid>https://orcid.org/0000-0002-5896-4190</orcidid><orcidid>https://orcid.org/0000-0001-9407-8455</orcidid><orcidid>https://orcid.org/0000-0002-4587-7469</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2024-09, Vol.53 (9), p.5298-5305 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_3087046953 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alternative energy sources Antireflection coatings Cadmium sulfide Cadmium tellurides Characterization and Evaluation of Materials Chemistry and Materials Science Copper Electronics and Microelectronics Energy conversion efficiency Gold Instrumentation Light reflection Materials Science Optical and Electronic Materials Original Research Article Photovoltaic cells Reflectance Short circuit currents Solar cells Solid State Physics Spin coating Substrates Thickness Thin films Zinc oxide |
title | Introducing Spin-coated ZnO Anti-reflection Coating for CdS/CdTe Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introducing%20Spin-coated%20ZnO%20Anti-reflection%20Coating%20for%20CdS/CdTe%20Solar%20Cells&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Wijesingha,%20J.%20R.&rft.date=2024-09-01&rft.volume=53&rft.issue=9&rft.spage=5298&rft.epage=5305&rft.pages=5298-5305&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-024-11260-0&rft_dat=%3Cproquest_cross%3E3087046953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087046953&rft_id=info:pmid/&rfr_iscdi=true |