Forecasting elections from partial information using a Bayesian model for a multinomial sequence of data

Predicting the winner of an election is of importance to multiple stakeholders. To formulate the problem, we consider an independent sequence of categorical data with a finite number of possible outcomes in each. The data is assumed to be observed in batches, each of which is based on a large number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting 2024-09, Vol.43 (6), p.1814-1834
Hauptverfasser: Deb, Soudeep, Roy, Rishideep, Das, Shubhabrata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1834
container_issue 6
container_start_page 1814
container_title Journal of forecasting
container_volume 43
creator Deb, Soudeep
Roy, Rishideep
Das, Shubhabrata
description Predicting the winner of an election is of importance to multiple stakeholders. To formulate the problem, we consider an independent sequence of categorical data with a finite number of possible outcomes in each. The data is assumed to be observed in batches, each of which is based on a large number of such trials and can be modeled via multinomial distributions. We postulate that the multinomial probabilities of the categories vary randomly depending on batches. The challenge is to predict accurately on cumulative data based on data up to a few batches as early as possible. On the theoretical front, we first derive sufficient conditions of asymptotic normality of the estimates of the multinomial cell probabilities and present corresponding suitable transformations. Then, in a Bayesian framework, we consider hierarchical priors using multivariate normal and inverse Wishart distributions and establish the posterior convergence. The desired inference is arrived at using these results and ensuing Gibbs sampling. The methodology is demonstrated with election data from two different settings—one from India and the other from the United States. Additional insights of the effectiveness of the proposed methodology are attained through a simulation study.
doi_str_mv 10.1002/for.3107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3087015265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087015265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3447-101a09c16b24bbad27042ab67e0791f30a8158dc677bd59f408bc0b10f2ba4413</originalsourceid><addsrcrecordid>eNp1kE1LxDAQQIMouK6CPyHgxUvXSdI27VEXV4WFBVHwFpI00SxtsyYtsv_e1BU8eRqYefPmA6FLAgsCQG-sDwtGgB-hGYG6zggjb8doBpTzrCxrdorOYtwCAK8InaGPlQ9Gyzi4_h2b1ujB-T5iG3yHdzIMTrbY9UnayamCxziBEt_JvYlO9rjzjWlxAlKyG9vk8d3UFM3naHptsLe4kYM8RydWttFc_MY5el3dvywfs_Xm4Wl5u840y3OeESASak1KRXOlZEM55FSqkhvgNbEMZEWKqtEl56opaptDpTQoApYqmeeEzdHVwbsLPm0QB7H1Y-jTSMGg4kAKWhaJuj5QOvgYg7FiF1wnw14QENMfRbpITH9MKD6gRvvexT-whqpmJWXTzOyAfLnW7P9VidXm-Uf5DSXzftE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087015265</pqid></control><display><type>article</type><title>Forecasting elections from partial information using a Bayesian model for a multinomial sequence of data</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Deb, Soudeep ; Roy, Rishideep ; Das, Shubhabrata</creator><creatorcontrib>Deb, Soudeep ; Roy, Rishideep ; Das, Shubhabrata</creatorcontrib><description>Predicting the winner of an election is of importance to multiple stakeholders. To formulate the problem, we consider an independent sequence of categorical data with a finite number of possible outcomes in each. The data is assumed to be observed in batches, each of which is based on a large number of such trials and can be modeled via multinomial distributions. We postulate that the multinomial probabilities of the categories vary randomly depending on batches. The challenge is to predict accurately on cumulative data based on data up to a few batches as early as possible. On the theoretical front, we first derive sufficient conditions of asymptotic normality of the estimates of the multinomial cell probabilities and present corresponding suitable transformations. Then, in a Bayesian framework, we consider hierarchical priors using multivariate normal and inverse Wishart distributions and establish the posterior convergence. The desired inference is arrived at using these results and ensuing Gibbs sampling. The methodology is demonstrated with election data from two different settings—one from India and the other from the United States. Additional insights of the effectiveness of the proposed methodology are attained through a simulation study.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/for.3107</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>Bayesian analysis ; Convergence ; election data ; Election forecasting ; Elections ; forecasting from partial information ; Gibbs sampling ; hierarchical priors ; Normality ; Partial information ; posterior convergence ; Probability ; Simulation</subject><ispartof>Journal of forecasting, 2024-09, Vol.43 (6), p.1814-1834</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3447-101a09c16b24bbad27042ab67e0791f30a8158dc677bd59f408bc0b10f2ba4413</cites><orcidid>0000-0003-1883-7848 ; 0000-0003-0567-7339 ; 0000-0001-9238-2701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffor.3107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffor.3107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Deb, Soudeep</creatorcontrib><creatorcontrib>Roy, Rishideep</creatorcontrib><creatorcontrib>Das, Shubhabrata</creatorcontrib><title>Forecasting elections from partial information using a Bayesian model for a multinomial sequence of data</title><title>Journal of forecasting</title><description>Predicting the winner of an election is of importance to multiple stakeholders. To formulate the problem, we consider an independent sequence of categorical data with a finite number of possible outcomes in each. The data is assumed to be observed in batches, each of which is based on a large number of such trials and can be modeled via multinomial distributions. We postulate that the multinomial probabilities of the categories vary randomly depending on batches. The challenge is to predict accurately on cumulative data based on data up to a few batches as early as possible. On the theoretical front, we first derive sufficient conditions of asymptotic normality of the estimates of the multinomial cell probabilities and present corresponding suitable transformations. Then, in a Bayesian framework, we consider hierarchical priors using multivariate normal and inverse Wishart distributions and establish the posterior convergence. The desired inference is arrived at using these results and ensuing Gibbs sampling. The methodology is demonstrated with election data from two different settings—one from India and the other from the United States. Additional insights of the effectiveness of the proposed methodology are attained through a simulation study.</description><subject>Bayesian analysis</subject><subject>Convergence</subject><subject>election data</subject><subject>Election forecasting</subject><subject>Elections</subject><subject>forecasting from partial information</subject><subject>Gibbs sampling</subject><subject>hierarchical priors</subject><subject>Normality</subject><subject>Partial information</subject><subject>posterior convergence</subject><subject>Probability</subject><subject>Simulation</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQQIMouK6CPyHgxUvXSdI27VEXV4WFBVHwFpI00SxtsyYtsv_e1BU8eRqYefPmA6FLAgsCQG-sDwtGgB-hGYG6zggjb8doBpTzrCxrdorOYtwCAK8InaGPlQ9Gyzi4_h2b1ujB-T5iG3yHdzIMTrbY9UnayamCxziBEt_JvYlO9rjzjWlxAlKyG9vk8d3UFM3naHptsLe4kYM8RydWttFc_MY5el3dvywfs_Xm4Wl5u840y3OeESASak1KRXOlZEM55FSqkhvgNbEMZEWKqtEl56opaptDpTQoApYqmeeEzdHVwbsLPm0QB7H1Y-jTSMGg4kAKWhaJuj5QOvgYg7FiF1wnw14QENMfRbpITH9MKD6gRvvexT-whqpmJWXTzOyAfLnW7P9VidXm-Uf5DSXzftE</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Deb, Soudeep</creator><creator>Roy, Rishideep</creator><creator>Das, Shubhabrata</creator><general>Wiley Periodicals Inc</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0003-1883-7848</orcidid><orcidid>https://orcid.org/0000-0003-0567-7339</orcidid><orcidid>https://orcid.org/0000-0001-9238-2701</orcidid></search><sort><creationdate>202409</creationdate><title>Forecasting elections from partial information using a Bayesian model for a multinomial sequence of data</title><author>Deb, Soudeep ; Roy, Rishideep ; Das, Shubhabrata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3447-101a09c16b24bbad27042ab67e0791f30a8158dc677bd59f408bc0b10f2ba4413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian analysis</topic><topic>Convergence</topic><topic>election data</topic><topic>Election forecasting</topic><topic>Elections</topic><topic>forecasting from partial information</topic><topic>Gibbs sampling</topic><topic>hierarchical priors</topic><topic>Normality</topic><topic>Partial information</topic><topic>posterior convergence</topic><topic>Probability</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deb, Soudeep</creatorcontrib><creatorcontrib>Roy, Rishideep</creatorcontrib><creatorcontrib>Das, Shubhabrata</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deb, Soudeep</au><au>Roy, Rishideep</au><au>Das, Shubhabrata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting elections from partial information using a Bayesian model for a multinomial sequence of data</atitle><jtitle>Journal of forecasting</jtitle><date>2024-09</date><risdate>2024</risdate><volume>43</volume><issue>6</issue><spage>1814</spage><epage>1834</epage><pages>1814-1834</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><abstract>Predicting the winner of an election is of importance to multiple stakeholders. To formulate the problem, we consider an independent sequence of categorical data with a finite number of possible outcomes in each. The data is assumed to be observed in batches, each of which is based on a large number of such trials and can be modeled via multinomial distributions. We postulate that the multinomial probabilities of the categories vary randomly depending on batches. The challenge is to predict accurately on cumulative data based on data up to a few batches as early as possible. On the theoretical front, we first derive sufficient conditions of asymptotic normality of the estimates of the multinomial cell probabilities and present corresponding suitable transformations. Then, in a Bayesian framework, we consider hierarchical priors using multivariate normal and inverse Wishart distributions and establish the posterior convergence. The desired inference is arrived at using these results and ensuing Gibbs sampling. The methodology is demonstrated with election data from two different settings—one from India and the other from the United States. Additional insights of the effectiveness of the proposed methodology are attained through a simulation study.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/for.3107</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1883-7848</orcidid><orcidid>https://orcid.org/0000-0003-0567-7339</orcidid><orcidid>https://orcid.org/0000-0001-9238-2701</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0277-6693
ispartof Journal of forecasting, 2024-09, Vol.43 (6), p.1814-1834
issn 0277-6693
1099-131X
language eng
recordid cdi_proquest_journals_3087015265
source Wiley Online Library Journals Frontfile Complete
subjects Bayesian analysis
Convergence
election data
Election forecasting
Elections
forecasting from partial information
Gibbs sampling
hierarchical priors
Normality
Partial information
posterior convergence
Probability
Simulation
title Forecasting elections from partial information using a Bayesian model for a multinomial sequence of data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20elections%20from%20partial%20information%20using%20a%20Bayesian%20model%20for%20a%20multinomial%20sequence%20of%20data&rft.jtitle=Journal%20of%20forecasting&rft.au=Deb,%20Soudeep&rft.date=2024-09&rft.volume=43&rft.issue=6&rft.spage=1814&rft.epage=1834&rft.pages=1814-1834&rft.issn=0277-6693&rft.eissn=1099-131X&rft_id=info:doi/10.1002/for.3107&rft_dat=%3Cproquest_cross%3E3087015265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087015265&rft_id=info:pmid/&rfr_iscdi=true