Prediction of skin disease using bottleneck technology

The largest organ of the human body is the skin. As our skin protects internal organs and provides the main defense against UV light, it also gives space for microorganisms that cause skin diseases. It is critical for doctors to find different kinds of diseases just by a glance whereas computer does...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bhavani, R., Prakash, V., Rajalakshmi, D., Karthik, Durga, Mathi, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3180
creator Bhavani, R.
Prakash, V.
Rajalakshmi, D.
Karthik, Durga
Mathi, R.
description The largest organ of the human body is the skin. As our skin protects internal organs and provides the main defense against UV light, it also gives space for microorganisms that cause skin diseases. It is critical for doctors to find different kinds of diseases just by a glance whereas computer does it with the help of deep research/learning. This paper depicts how to identify different kinds of skin diseases by just seeing the picture of the skin as an input, using transfer learning and a Bottleneck. The bottleneck is a layer preliminary to the final layer which does the classification. The output produced by this layer is adequate enough for the classifier to recognize the stage/classes to which the image belongs. The highlight of the bottleneck is, that there is no need for repeated deliberations required as every image is reprocessed multiple times during the training and bottleneck values are caught on disk. This method/system gives better accuracy than other algorithms, reduces the overall execution time and also displays the accurate result.
doi_str_mv 10.1063/5.0226008
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3087002148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087002148</sourcerecordid><originalsourceid>FETCH-LOGICAL-p638-756b679669df1e93eaeb870a691f815b56b7653bd975a11a94b20315fc4271923</originalsourceid><addsrcrecordid>eNotkD1PwzAYhC0EEqEw8A8isSGlvK8df42o4kuqBEMHNstJnOI2xCF2hv57UrXTDXd6TneE3CMsEQR74kugVACoC5Ih51hIgeKSZAC6LGjJvq_JTYw7AKqlVBkRX6NrfJ186PPQ5nHv-7zx0dno8in6fptXIaXO9a7e58nVP33owvZwS65a20V3d9YF2by-bFbvxfrz7WP1vC4GwVQhuaiE1ELopkWnmbOuUhKs0Ngq5NVsS8FZ1WjJLaLVZUWBIW_rkkrUlC3Iwwk7jOFvcjGZXZjGfm40DGYSUCzVnHo8pWLtkz1OMcPof-14MAjmeIvh5nwL-wc0-1KQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3087002148</pqid></control><display><type>conference_proceeding</type><title>Prediction of skin disease using bottleneck technology</title><source>AIP Journals Complete</source><creator>Bhavani, R. ; Prakash, V. ; Rajalakshmi, D. ; Karthik, Durga ; Mathi, R.</creator><contributor>Meganathan, S. ; Narasimhan, D. ; Natarajan, C. ; Srinivasan, A. ; Rajadurai, P.</contributor><creatorcontrib>Bhavani, R. ; Prakash, V. ; Rajalakshmi, D. ; Karthik, Durga ; Mathi, R. ; Meganathan, S. ; Narasimhan, D. ; Natarajan, C. ; Srinivasan, A. ; Rajadurai, P.</creatorcontrib><description>The largest organ of the human body is the skin. As our skin protects internal organs and provides the main defense against UV light, it also gives space for microorganisms that cause skin diseases. It is critical for doctors to find different kinds of diseases just by a glance whereas computer does it with the help of deep research/learning. This paper depicts how to identify different kinds of skin diseases by just seeing the picture of the skin as an input, using transfer learning and a Bottleneck. The bottleneck is a layer preliminary to the final layer which does the classification. The output produced by this layer is adequate enough for the classifier to recognize the stage/classes to which the image belongs. The highlight of the bottleneck is, that there is no need for repeated deliberations required as every image is reprocessed multiple times during the training and bottleneck values are caught on disk. This method/system gives better accuracy than other algorithms, reduces the overall execution time and also displays the accurate result.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0226008</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Machine learning ; Medical imaging ; Skin diseases ; Ultraviolet radiation</subject><ispartof>AIP conference proceedings, 2024, Vol.3180 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0226008$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Meganathan, S.</contributor><contributor>Narasimhan, D.</contributor><contributor>Natarajan, C.</contributor><contributor>Srinivasan, A.</contributor><contributor>Rajadurai, P.</contributor><creatorcontrib>Bhavani, R.</creatorcontrib><creatorcontrib>Prakash, V.</creatorcontrib><creatorcontrib>Rajalakshmi, D.</creatorcontrib><creatorcontrib>Karthik, Durga</creatorcontrib><creatorcontrib>Mathi, R.</creatorcontrib><title>Prediction of skin disease using bottleneck technology</title><title>AIP conference proceedings</title><description>The largest organ of the human body is the skin. As our skin protects internal organs and provides the main defense against UV light, it also gives space for microorganisms that cause skin diseases. It is critical for doctors to find different kinds of diseases just by a glance whereas computer does it with the help of deep research/learning. This paper depicts how to identify different kinds of skin diseases by just seeing the picture of the skin as an input, using transfer learning and a Bottleneck. The bottleneck is a layer preliminary to the final layer which does the classification. The output produced by this layer is adequate enough for the classifier to recognize the stage/classes to which the image belongs. The highlight of the bottleneck is, that there is no need for repeated deliberations required as every image is reprocessed multiple times during the training and bottleneck values are caught on disk. This method/system gives better accuracy than other algorithms, reduces the overall execution time and also displays the accurate result.</description><subject>Algorithms</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Skin diseases</subject><subject>Ultraviolet radiation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkD1PwzAYhC0EEqEw8A8isSGlvK8df42o4kuqBEMHNstJnOI2xCF2hv57UrXTDXd6TneE3CMsEQR74kugVACoC5Ih51hIgeKSZAC6LGjJvq_JTYw7AKqlVBkRX6NrfJ186PPQ5nHv-7zx0dno8in6fptXIaXO9a7e58nVP33owvZwS65a20V3d9YF2by-bFbvxfrz7WP1vC4GwVQhuaiE1ELopkWnmbOuUhKs0Ngq5NVsS8FZ1WjJLaLVZUWBIW_rkkrUlC3Iwwk7jOFvcjGZXZjGfm40DGYSUCzVnHo8pWLtkz1OMcPof-14MAjmeIvh5nwL-wc0-1KQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Bhavani, R.</creator><creator>Prakash, V.</creator><creator>Rajalakshmi, D.</creator><creator>Karthik, Durga</creator><creator>Mathi, R.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240801</creationdate><title>Prediction of skin disease using bottleneck technology</title><author>Bhavani, R. ; Prakash, V. ; Rajalakshmi, D. ; Karthik, Durga ; Mathi, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p638-756b679669df1e93eaeb870a691f815b56b7653bd975a11a94b20315fc4271923</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Skin diseases</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhavani, R.</creatorcontrib><creatorcontrib>Prakash, V.</creatorcontrib><creatorcontrib>Rajalakshmi, D.</creatorcontrib><creatorcontrib>Karthik, Durga</creatorcontrib><creatorcontrib>Mathi, R.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhavani, R.</au><au>Prakash, V.</au><au>Rajalakshmi, D.</au><au>Karthik, Durga</au><au>Mathi, R.</au><au>Meganathan, S.</au><au>Narasimhan, D.</au><au>Natarajan, C.</au><au>Srinivasan, A.</au><au>Rajadurai, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Prediction of skin disease using bottleneck technology</atitle><btitle>AIP conference proceedings</btitle><date>2024-08-01</date><risdate>2024</risdate><volume>3180</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The largest organ of the human body is the skin. As our skin protects internal organs and provides the main defense against UV light, it also gives space for microorganisms that cause skin diseases. It is critical for doctors to find different kinds of diseases just by a glance whereas computer does it with the help of deep research/learning. This paper depicts how to identify different kinds of skin diseases by just seeing the picture of the skin as an input, using transfer learning and a Bottleneck. The bottleneck is a layer preliminary to the final layer which does the classification. The output produced by this layer is adequate enough for the classifier to recognize the stage/classes to which the image belongs. The highlight of the bottleneck is, that there is no need for repeated deliberations required as every image is reprocessed multiple times during the training and bottleneck values are caught on disk. This method/system gives better accuracy than other algorithms, reduces the overall execution time and also displays the accurate result.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0226008</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3180 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3087002148
source AIP Journals Complete
subjects Algorithms
Machine learning
Medical imaging
Skin diseases
Ultraviolet radiation
title Prediction of skin disease using bottleneck technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Prediction%20of%20skin%20disease%20using%20bottleneck%20technology&rft.btitle=AIP%20conference%20proceedings&rft.au=Bhavani,%20R.&rft.date=2024-08-01&rft.volume=3180&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0226008&rft_dat=%3Cproquest_scita%3E3087002148%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087002148&rft_id=info:pmid/&rfr_iscdi=true