Enhancing wafer defect detection via ensemble learning

Wafer inspection is crucial for semiconductor manufacturing, as it identifies defects in wafers before manufacturing. Wafer defect detection avoids wasting time and production capacity, boosts productivity, and assures production quality. In this paper, we propose an ensemble learning-based method f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2024-08, Vol.14 (8), p.085301-085301-11
Hauptverfasser: Pan, A. Su, Nie, B. Xingyang, Zhai, C. Xiaoyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 085301-11
container_issue 8
container_start_page 085301
container_title AIP advances
container_volume 14
creator Pan, A. Su
Nie, B. Xingyang
Zhai, C. Xiaoyu
description Wafer inspection is crucial for semiconductor manufacturing, as it identifies defects in wafers before manufacturing. Wafer defect detection avoids wasting time and production capacity, boosts productivity, and assures production quality. In this paper, we propose an ensemble learning-based method for wafer defect detection that fuses the classification results of four models, namely, ResNet, ResNeSt, ResNeSt + CBAM, and ResNeSt + Self-attention. During the integration phase, we employ a hybrid strategy that combines weighted averaging and voting to determine weight coefficients. Our analysis shows that the model’s performance surpasses that of the arithmetic mean model within an interval of 0.8–1, according to our mathematical derivations. Furthermore, results demonstrate and substantiate that optimal performance is attained by setting the weighting value to 1. We experimentally validated the effectiveness of the proposed method on the WM-811k industrial dataset. In the experiments, the ensemble learning based method achieves an accuracy of 99.70%, which outperforms the individual model. Our approach outperforms the traditional arithmetic mean model by combining the strengths of all prediction models to improve prediction accuracy. Experimental results demonstrate that the proposed method has the potential to be an ideal option for wafer defect detection.
doi_str_mv 10.1063/5.0222140
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3087001779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cf585706d9c34a8abf7773b0e66f12e2</doaj_id><sourcerecordid>3087001779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-8161cc0258e1821f3e8242e1abf0be248779feb142f77610f697f4d606fe49cc3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGoPfoMFTwqrkz-bZI9SqhYKXvQcstlJ3bLdrclW8dubukU8OZc3DD_ePB4hlxRuKUh-V9wCY4wKOCETRgudc8bk6Z_9nMxi3EAaUVLQYkLkonuznWu6dfZpPYasRo9uSDIkafou-2hshl3EbdVi1qINXYIvyJm3bcTZUafk9WHxMn_KV8-Py_n9KndM8yHXVFLngBUaqWbUc9RMMKS28lAhE1qp0mNFBfNKSQpelsqLWoL0KErn-JQsR9-6txuzC83Whi_T28b8HPqwNjYMjWvROF_oQoGsS8eF1emFUopXgFJ6ypAlr6vRaxf69z3GwWz6fehSfMNBKwCa0iTqeqRc6GMM6H-_UjCHlk1hji0n9mZko2sGe2jrH_gb8gl5RQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087001779</pqid></control><display><type>article</type><title>Enhancing wafer defect detection via ensemble learning</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Pan, A. Su ; Nie, B. Xingyang ; Zhai, C. Xiaoyu</creator><creatorcontrib>Pan, A. Su ; Nie, B. Xingyang ; Zhai, C. Xiaoyu</creatorcontrib><description>Wafer inspection is crucial for semiconductor manufacturing, as it identifies defects in wafers before manufacturing. Wafer defect detection avoids wasting time and production capacity, boosts productivity, and assures production quality. In this paper, we propose an ensemble learning-based method for wafer defect detection that fuses the classification results of four models, namely, ResNet, ResNeSt, ResNeSt + CBAM, and ResNeSt + Self-attention. During the integration phase, we employ a hybrid strategy that combines weighted averaging and voting to determine weight coefficients. Our analysis shows that the model’s performance surpasses that of the arithmetic mean model within an interval of 0.8–1, according to our mathematical derivations. Furthermore, results demonstrate and substantiate that optimal performance is attained by setting the weighting value to 1. We experimentally validated the effectiveness of the proposed method on the WM-811k industrial dataset. In the experiments, the ensemble learning based method achieves an accuracy of 99.70%, which outperforms the individual model. Our approach outperforms the traditional arithmetic mean model by combining the strengths of all prediction models to improve prediction accuracy. Experimental results demonstrate that the proposed method has the potential to be an ideal option for wafer defect detection.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0222140</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Arithmetic ; Defects ; Ensemble learning ; Manufacturing ; Mathematical analysis ; Prediction models</subject><ispartof>AIP advances, 2024-08, Vol.14 (8), p.085301-085301-11</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-8161cc0258e1821f3e8242e1abf0be248779feb142f77610f697f4d606fe49cc3</cites><orcidid>0009-0008-4988-5387 ; 0000-0002-2608-2396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Pan, A. Su</creatorcontrib><creatorcontrib>Nie, B. Xingyang</creatorcontrib><creatorcontrib>Zhai, C. Xiaoyu</creatorcontrib><title>Enhancing wafer defect detection via ensemble learning</title><title>AIP advances</title><description>Wafer inspection is crucial for semiconductor manufacturing, as it identifies defects in wafers before manufacturing. Wafer defect detection avoids wasting time and production capacity, boosts productivity, and assures production quality. In this paper, we propose an ensemble learning-based method for wafer defect detection that fuses the classification results of four models, namely, ResNet, ResNeSt, ResNeSt + CBAM, and ResNeSt + Self-attention. During the integration phase, we employ a hybrid strategy that combines weighted averaging and voting to determine weight coefficients. Our analysis shows that the model’s performance surpasses that of the arithmetic mean model within an interval of 0.8–1, according to our mathematical derivations. Furthermore, results demonstrate and substantiate that optimal performance is attained by setting the weighting value to 1. We experimentally validated the effectiveness of the proposed method on the WM-811k industrial dataset. In the experiments, the ensemble learning based method achieves an accuracy of 99.70%, which outperforms the individual model. Our approach outperforms the traditional arithmetic mean model by combining the strengths of all prediction models to improve prediction accuracy. Experimental results demonstrate that the proposed method has the potential to be an ideal option for wafer defect detection.</description><subject>Accuracy</subject><subject>Arithmetic</subject><subject>Defects</subject><subject>Ensemble learning</subject><subject>Manufacturing</subject><subject>Mathematical analysis</subject><subject>Prediction models</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE9LAzEQxYMoWGoPfoMFTwqrkz-bZI9SqhYKXvQcstlJ3bLdrclW8dubukU8OZc3DD_ePB4hlxRuKUh-V9wCY4wKOCETRgudc8bk6Z_9nMxi3EAaUVLQYkLkonuznWu6dfZpPYasRo9uSDIkafou-2hshl3EbdVi1qINXYIvyJm3bcTZUafk9WHxMn_KV8-Py_n9KndM8yHXVFLngBUaqWbUc9RMMKS28lAhE1qp0mNFBfNKSQpelsqLWoL0KErn-JQsR9-6txuzC83Whi_T28b8HPqwNjYMjWvROF_oQoGsS8eF1emFUopXgFJ6ypAlr6vRaxf69z3GwWz6fehSfMNBKwCa0iTqeqRc6GMM6H-_UjCHlk1hji0n9mZko2sGe2jrH_gb8gl5RQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Pan, A. Su</creator><creator>Nie, B. Xingyang</creator><creator>Zhai, C. Xiaoyu</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-4988-5387</orcidid><orcidid>https://orcid.org/0000-0002-2608-2396</orcidid></search><sort><creationdate>20240801</creationdate><title>Enhancing wafer defect detection via ensemble learning</title><author>Pan, A. Su ; Nie, B. Xingyang ; Zhai, C. Xiaoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-8161cc0258e1821f3e8242e1abf0be248779feb142f77610f697f4d606fe49cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Arithmetic</topic><topic>Defects</topic><topic>Ensemble learning</topic><topic>Manufacturing</topic><topic>Mathematical analysis</topic><topic>Prediction models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, A. Su</creatorcontrib><creatorcontrib>Nie, B. Xingyang</creatorcontrib><creatorcontrib>Zhai, C. Xiaoyu</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, A. Su</au><au>Nie, B. Xingyang</au><au>Zhai, C. Xiaoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing wafer defect detection via ensemble learning</atitle><jtitle>AIP advances</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>14</volume><issue>8</issue><spage>085301</spage><epage>085301-11</epage><pages>085301-085301-11</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Wafer inspection is crucial for semiconductor manufacturing, as it identifies defects in wafers before manufacturing. Wafer defect detection avoids wasting time and production capacity, boosts productivity, and assures production quality. In this paper, we propose an ensemble learning-based method for wafer defect detection that fuses the classification results of four models, namely, ResNet, ResNeSt, ResNeSt + CBAM, and ResNeSt + Self-attention. During the integration phase, we employ a hybrid strategy that combines weighted averaging and voting to determine weight coefficients. Our analysis shows that the model’s performance surpasses that of the arithmetic mean model within an interval of 0.8–1, according to our mathematical derivations. Furthermore, results demonstrate and substantiate that optimal performance is attained by setting the weighting value to 1. We experimentally validated the effectiveness of the proposed method on the WM-811k industrial dataset. In the experiments, the ensemble learning based method achieves an accuracy of 99.70%, which outperforms the individual model. Our approach outperforms the traditional arithmetic mean model by combining the strengths of all prediction models to improve prediction accuracy. Experimental results demonstrate that the proposed method has the potential to be an ideal option for wafer defect detection.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0222140</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0008-4988-5387</orcidid><orcidid>https://orcid.org/0000-0002-2608-2396</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2024-08, Vol.14 (8), p.085301-085301-11
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_3087001779
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Accuracy
Arithmetic
Defects
Ensemble learning
Manufacturing
Mathematical analysis
Prediction models
title Enhancing wafer defect detection via ensemble learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20wafer%20defect%20detection%20via%20ensemble%20learning&rft.jtitle=AIP%20advances&rft.au=Pan,%20A.%20Su&rft.date=2024-08-01&rft.volume=14&rft.issue=8&rft.spage=085301&rft.epage=085301-11&rft.pages=085301-085301-11&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0222140&rft_dat=%3Cproquest_scita%3E3087001779%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087001779&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_cf585706d9c34a8abf7773b0e66f12e2&rfr_iscdi=true