Beyond accuracy: The advantages of the k-nearest neighbor algorithm for hotel revenue management forecasting

Revenue management (RM) systems forecast demand and optimize prices to maximize a hotel’s revenue. The RM function operates in coordination between a system and an analyst. Systems provide recommendations while analysts review the forecasts and prices to approve or make subjective adjustments. In ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tourism economics : the business and finance of tourism and recreation 2024-08, Vol.30 (5), p.1216-1236
Hauptverfasser: Webb, Timothy, Lee, Misuk, Schwartz, Zvi, Vouk, Ira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1236
container_issue 5
container_start_page 1216
container_title Tourism economics : the business and finance of tourism and recreation
container_volume 30
creator Webb, Timothy
Lee, Misuk
Schwartz, Zvi
Vouk, Ira
description Revenue management (RM) systems forecast demand and optimize prices to maximize a hotel’s revenue. The RM function operates in coordination between a system and an analyst. Systems provide recommendations while analysts review the forecasts and prices to approve or make subjective adjustments. In many cases the recommendations are a “black box” with little insight regarding how recommendations are derived. This article proposes the k-Nearest Neighbor (k-NN) algorithm as a forecasting approach that can transition the “black box” to a “glass box.” The benefits of the k-NN are discussed in detail and compared with neural networks. The analysis is conducted on 35 hotels in partnership with a leading RM service provider. The results indicate similar performance for both techniques, leading to an important discussion on model evaluation outside of accuracy. In particular, the article discusses some of the unique advantages k-NN provides for the RM discipline.
doi_str_mv 10.1177/13548166231201199
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086981376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_13548166231201199</sage_id><sourcerecordid>3086981376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-728d99da508775972d1efbc870ba2fb703cb426b5b5738452635f83a2cdb5a403</originalsourceid><addsrcrecordid>eNp1UMlOwzAQtRBIlMIHcLPEOcVLHNvcoGKTKnEp58hxnKUkdrGTSv17HAWpB8RpNDNvmXkA3GK0wpjze0xZKnCWEYoJwljKM7AgKE0TRDk7B4tpn0yAS3AVwg4hktFMLkD3ZI7OllBpPXqljw9w2xioyoOyg6pNgK6CQ5x8JdYob8IArWnrpnAeqq52vh2aHlaxa9xgOujNwdjRwF7ZyO6NHaal0SoMra2vwUWlumBufusSfL48b9dvyebj9X39uEk0JXhIOBGllKViSHDOJCclNlWhBUeFIlXBEdVFSrKCFYxTkbL4CqsEVUSXBVMpoktwN-vuvfse49H5zo3eRsucIpFJgSnPIgrPKO1dCN5U-d63vfLHHKN8CjX_E2rkwJljtLNtODEkIikWkk2yqxkSYgIn4_81fwDXVIGT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086981376</pqid></control><display><type>article</type><title>Beyond accuracy: The advantages of the k-nearest neighbor algorithm for hotel revenue management forecasting</title><source>SAGE Complete A-Z List</source><creator>Webb, Timothy ; Lee, Misuk ; Schwartz, Zvi ; Vouk, Ira</creator><creatorcontrib>Webb, Timothy ; Lee, Misuk ; Schwartz, Zvi ; Vouk, Ira</creatorcontrib><description>Revenue management (RM) systems forecast demand and optimize prices to maximize a hotel’s revenue. The RM function operates in coordination between a system and an analyst. Systems provide recommendations while analysts review the forecasts and prices to approve or make subjective adjustments. In many cases the recommendations are a “black box” with little insight regarding how recommendations are derived. This article proposes the k-Nearest Neighbor (k-NN) algorithm as a forecasting approach that can transition the “black box” to a “glass box.” The benefits of the k-NN are discussed in detail and compared with neural networks. The analysis is conducted on 35 hotels in partnership with a leading RM service provider. The results indicate similar performance for both techniques, leading to an important discussion on model evaluation outside of accuracy. In particular, the article discusses some of the unique advantages k-NN provides for the RM discipline.</description><identifier>ISSN: 1354-8166</identifier><identifier>EISSN: 2044-0375</identifier><identifier>DOI: 10.1177/13548166231201199</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Accuracy ; Algorithms ; Black boxes ; Coordination ; Forecasting ; Hotels ; Hotels &amp; motels ; K-nearest neighbors algorithm ; Neural networks ; Prices ; Revenue ; Systems analysis</subject><ispartof>Tourism economics : the business and finance of tourism and recreation, 2024-08, Vol.30 (5), p.1216-1236</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-728d99da508775972d1efbc870ba2fb703cb426b5b5738452635f83a2cdb5a403</cites><orcidid>0000-0001-9254-5670 ; 0000-0002-4435-1596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/13548166231201199$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/13548166231201199$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Webb, Timothy</creatorcontrib><creatorcontrib>Lee, Misuk</creatorcontrib><creatorcontrib>Schwartz, Zvi</creatorcontrib><creatorcontrib>Vouk, Ira</creatorcontrib><title>Beyond accuracy: The advantages of the k-nearest neighbor algorithm for hotel revenue management forecasting</title><title>Tourism economics : the business and finance of tourism and recreation</title><description>Revenue management (RM) systems forecast demand and optimize prices to maximize a hotel’s revenue. The RM function operates in coordination between a system and an analyst. Systems provide recommendations while analysts review the forecasts and prices to approve or make subjective adjustments. In many cases the recommendations are a “black box” with little insight regarding how recommendations are derived. This article proposes the k-Nearest Neighbor (k-NN) algorithm as a forecasting approach that can transition the “black box” to a “glass box.” The benefits of the k-NN are discussed in detail and compared with neural networks. The analysis is conducted on 35 hotels in partnership with a leading RM service provider. The results indicate similar performance for both techniques, leading to an important discussion on model evaluation outside of accuracy. In particular, the article discusses some of the unique advantages k-NN provides for the RM discipline.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Black boxes</subject><subject>Coordination</subject><subject>Forecasting</subject><subject>Hotels</subject><subject>Hotels &amp; motels</subject><subject>K-nearest neighbors algorithm</subject><subject>Neural networks</subject><subject>Prices</subject><subject>Revenue</subject><subject>Systems analysis</subject><issn>1354-8166</issn><issn>2044-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UMlOwzAQtRBIlMIHcLPEOcVLHNvcoGKTKnEp58hxnKUkdrGTSv17HAWpB8RpNDNvmXkA3GK0wpjze0xZKnCWEYoJwljKM7AgKE0TRDk7B4tpn0yAS3AVwg4hktFMLkD3ZI7OllBpPXqljw9w2xioyoOyg6pNgK6CQ5x8JdYob8IArWnrpnAeqq52vh2aHlaxa9xgOujNwdjRwF7ZyO6NHaal0SoMra2vwUWlumBufusSfL48b9dvyebj9X39uEk0JXhIOBGllKViSHDOJCclNlWhBUeFIlXBEdVFSrKCFYxTkbL4CqsEVUSXBVMpoktwN-vuvfse49H5zo3eRsucIpFJgSnPIgrPKO1dCN5U-d63vfLHHKN8CjX_E2rkwJljtLNtODEkIikWkk2yqxkSYgIn4_81fwDXVIGT</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Webb, Timothy</creator><creator>Lee, Misuk</creator><creator>Schwartz, Zvi</creator><creator>Vouk, Ira</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9254-5670</orcidid><orcidid>https://orcid.org/0000-0002-4435-1596</orcidid></search><sort><creationdate>20240801</creationdate><title>Beyond accuracy: The advantages of the k-nearest neighbor algorithm for hotel revenue management forecasting</title><author>Webb, Timothy ; Lee, Misuk ; Schwartz, Zvi ; Vouk, Ira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-728d99da508775972d1efbc870ba2fb703cb426b5b5738452635f83a2cdb5a403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Black boxes</topic><topic>Coordination</topic><topic>Forecasting</topic><topic>Hotels</topic><topic>Hotels &amp; motels</topic><topic>K-nearest neighbors algorithm</topic><topic>Neural networks</topic><topic>Prices</topic><topic>Revenue</topic><topic>Systems analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Webb, Timothy</creatorcontrib><creatorcontrib>Lee, Misuk</creatorcontrib><creatorcontrib>Schwartz, Zvi</creatorcontrib><creatorcontrib>Vouk, Ira</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><jtitle>Tourism economics : the business and finance of tourism and recreation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Webb, Timothy</au><au>Lee, Misuk</au><au>Schwartz, Zvi</au><au>Vouk, Ira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond accuracy: The advantages of the k-nearest neighbor algorithm for hotel revenue management forecasting</atitle><jtitle>Tourism economics : the business and finance of tourism and recreation</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>30</volume><issue>5</issue><spage>1216</spage><epage>1236</epage><pages>1216-1236</pages><issn>1354-8166</issn><eissn>2044-0375</eissn><abstract>Revenue management (RM) systems forecast demand and optimize prices to maximize a hotel’s revenue. The RM function operates in coordination between a system and an analyst. Systems provide recommendations while analysts review the forecasts and prices to approve or make subjective adjustments. In many cases the recommendations are a “black box” with little insight regarding how recommendations are derived. This article proposes the k-Nearest Neighbor (k-NN) algorithm as a forecasting approach that can transition the “black box” to a “glass box.” The benefits of the k-NN are discussed in detail and compared with neural networks. The analysis is conducted on 35 hotels in partnership with a leading RM service provider. The results indicate similar performance for both techniques, leading to an important discussion on model evaluation outside of accuracy. In particular, the article discusses some of the unique advantages k-NN provides for the RM discipline.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/13548166231201199</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9254-5670</orcidid><orcidid>https://orcid.org/0000-0002-4435-1596</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1354-8166
ispartof Tourism economics : the business and finance of tourism and recreation, 2024-08, Vol.30 (5), p.1216-1236
issn 1354-8166
2044-0375
language eng
recordid cdi_proquest_journals_3086981376
source SAGE Complete A-Z List
subjects Accuracy
Algorithms
Black boxes
Coordination
Forecasting
Hotels
Hotels & motels
K-nearest neighbors algorithm
Neural networks
Prices
Revenue
Systems analysis
title Beyond accuracy: The advantages of the k-nearest neighbor algorithm for hotel revenue management forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A08%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20accuracy:%20The%20advantages%20of%20the%20k-nearest%20neighbor%20algorithm%20for%20hotel%20revenue%20management%20forecasting&rft.jtitle=Tourism%20economics%20:%20the%20business%20and%20finance%20of%20tourism%20and%20recreation&rft.au=Webb,%20Timothy&rft.date=2024-08-01&rft.volume=30&rft.issue=5&rft.spage=1216&rft.epage=1236&rft.pages=1216-1236&rft.issn=1354-8166&rft.eissn=2044-0375&rft_id=info:doi/10.1177/13548166231201199&rft_dat=%3Cproquest_cross%3E3086981376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086981376&rft_id=info:pmid/&rft_sage_id=10.1177_13548166231201199&rfr_iscdi=true