Carrier frequency phase calibration method for global navigation satellite system signal simulators
Carrier frequency phase differences of global navigation satellite system (GNSS) signals between multiple antennas are measured in many coordinate and navigation applications. GNSS signal simulators are used for determining and controlling instrumental errors of consumer navigation equipment. Theref...
Gespeichert in:
Veröffentlicht in: | Measurement techniques 2024-04, Vol.67 (1), p.46-55 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 1 |
container_start_page | 46 |
container_title | Measurement techniques |
container_volume | 67 |
creator | Donchenko, S. I. Denisenko, O. V. Kaverin, A. M. Pudlovsky, V. B. Frolov, A. A. Bondarenko, A. S. |
description | Carrier frequency phase differences of global navigation satellite system (GNSS) signals between multiple antennas are measured in many coordinate and navigation applications. GNSS signal simulators are used for determining and controlling instrumental errors of consumer navigation equipment. Therefore, determining the systematic error of the carrier frequency phase of the generated signals is imperative. On this basis, in this study, a calibration method of GNSS signal simulators based on the refined error model of the generated phase differences between simulator outlets was developed and tested. The proposed method was implemented using a wideband oscilloscope as an analog-to-digital converter. Validation of the simulator calibration method was performed by comparison with the measurement results obtained using the State secondary standard of units of complex transmission coefficients in the range of 0–60 dB and complex reflection coefficients in the range of 0.002–1 in the frequency range of 0.05–65 GHz (registration No. 2.1.ZZT.0210.2015). The proposed simulator calibration method can be used to determine calibration corrections to the phase differences of the carrier frequencies of radio signals reproduced by the simulator with an expanded uncertainty of 1° at a coverage factor of 3. The proposed method provides the required accuracy of generating phase differences of the carrier frequencies of GNSS signals for modern types of simulators. |
doi_str_mv | 10.1007/s11018-024-02319-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086898378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086898378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-9bc860de37003bd640b4513f3c8ada33a5fbcf68b1a68367988d76e1bf1508623</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19WkafNYyuALBtzoOqRp0snQacbcjDD_3mgFdy4ud3G_czj3IHRNyS0lRNwBpYTKitRNGUZVpU7QgraCVVIRfooWpG1YRZWoz9EFwJYQwgRXC2RXJqXgEvbJfRzcZI94vzHgsDVj6JLJIU545_Im9tjHhIcxdmbEk_kMw3wEk904huwwHCG7HYYwTAWBsDuMJscEl-jMmxHc1e9eovfHh7fVc7V-fXpZ3a8rWxOSK9VZyUnvmCjhup43pGtayjyz0vSGMdP6znouO2q4ZFwoKXvBHe08bYnkNVuim9l3n2L5BbLexkMqWUCzAkglmZCFqmfKpgiQnNf7FHYmHTUl-rtMPZepS5n6p0ytiojNIijwNLj0Z_2P6gusunkU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086898378</pqid></control><display><type>article</type><title>Carrier frequency phase calibration method for global navigation satellite system signal simulators</title><source>SpringerLink Journals - AutoHoldings</source><creator>Donchenko, S. I. ; Denisenko, O. V. ; Kaverin, A. M. ; Pudlovsky, V. B. ; Frolov, A. A. ; Bondarenko, A. S.</creator><creatorcontrib>Donchenko, S. I. ; Denisenko, O. V. ; Kaverin, A. M. ; Pudlovsky, V. B. ; Frolov, A. A. ; Bondarenko, A. S.</creatorcontrib><description>Carrier frequency phase differences of global navigation satellite system (GNSS) signals between multiple antennas are measured in many coordinate and navigation applications. GNSS signal simulators are used for determining and controlling instrumental errors of consumer navigation equipment. Therefore, determining the systematic error of the carrier frequency phase of the generated signals is imperative. On this basis, in this study, a calibration method of GNSS signal simulators based on the refined error model of the generated phase differences between simulator outlets was developed and tested. The proposed method was implemented using a wideband oscilloscope as an analog-to-digital converter. Validation of the simulator calibration method was performed by comparison with the measurement results obtained using the State secondary standard of units of complex transmission coefficients in the range of 0–60 dB and complex reflection coefficients in the range of 0.002–1 in the frequency range of 0.05–65 GHz (registration No. 2.1.ZZT.0210.2015). The proposed simulator calibration method can be used to determine calibration corrections to the phase differences of the carrier frequencies of radio signals reproduced by the simulator with an expanded uncertainty of 1° at a coverage factor of 3. The proposed method provides the required accuracy of generating phase differences of the carrier frequencies of GNSS signals for modern types of simulators.</description><identifier>ISSN: 0543-1972</identifier><identifier>EISSN: 1573-8906</identifier><identifier>DOI: 10.1007/s11018-024-02319-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analog to digital converters ; Analytical Chemistry ; Calibration ; Carrier frequencies ; Characterization and Evaluation of Materials ; Control equipment ; Error analysis ; Frequency ranges ; Global navigation satellite system ; Measurement Science and Instrumentation ; Physical Chemistry ; Physics ; Physics and Astronomy ; Radio signals ; Simulators ; Systematic errors</subject><ispartof>Measurement techniques, 2024-04, Vol.67 (1), p.46-55</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-9bc860de37003bd640b4513f3c8ada33a5fbcf68b1a68367988d76e1bf1508623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11018-024-02319-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11018-024-02319-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Donchenko, S. I.</creatorcontrib><creatorcontrib>Denisenko, O. V.</creatorcontrib><creatorcontrib>Kaverin, A. M.</creatorcontrib><creatorcontrib>Pudlovsky, V. B.</creatorcontrib><creatorcontrib>Frolov, A. A.</creatorcontrib><creatorcontrib>Bondarenko, A. S.</creatorcontrib><title>Carrier frequency phase calibration method for global navigation satellite system signal simulators</title><title>Measurement techniques</title><addtitle>Meas Tech</addtitle><description>Carrier frequency phase differences of global navigation satellite system (GNSS) signals between multiple antennas are measured in many coordinate and navigation applications. GNSS signal simulators are used for determining and controlling instrumental errors of consumer navigation equipment. Therefore, determining the systematic error of the carrier frequency phase of the generated signals is imperative. On this basis, in this study, a calibration method of GNSS signal simulators based on the refined error model of the generated phase differences between simulator outlets was developed and tested. The proposed method was implemented using a wideband oscilloscope as an analog-to-digital converter. Validation of the simulator calibration method was performed by comparison with the measurement results obtained using the State secondary standard of units of complex transmission coefficients in the range of 0–60 dB and complex reflection coefficients in the range of 0.002–1 in the frequency range of 0.05–65 GHz (registration No. 2.1.ZZT.0210.2015). The proposed simulator calibration method can be used to determine calibration corrections to the phase differences of the carrier frequencies of radio signals reproduced by the simulator with an expanded uncertainty of 1° at a coverage factor of 3. The proposed method provides the required accuracy of generating phase differences of the carrier frequencies of GNSS signals for modern types of simulators.</description><subject>Analog to digital converters</subject><subject>Analytical Chemistry</subject><subject>Calibration</subject><subject>Carrier frequencies</subject><subject>Characterization and Evaluation of Materials</subject><subject>Control equipment</subject><subject>Error analysis</subject><subject>Frequency ranges</subject><subject>Global navigation satellite system</subject><subject>Measurement Science and Instrumentation</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radio signals</subject><subject>Simulators</subject><subject>Systematic errors</subject><issn>0543-1972</issn><issn>1573-8906</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19WkafNYyuALBtzoOqRp0snQacbcjDD_3mgFdy4ud3G_czj3IHRNyS0lRNwBpYTKitRNGUZVpU7QgraCVVIRfooWpG1YRZWoz9EFwJYQwgRXC2RXJqXgEvbJfRzcZI94vzHgsDVj6JLJIU545_Im9tjHhIcxdmbEk_kMw3wEk904huwwHCG7HYYwTAWBsDuMJscEl-jMmxHc1e9eovfHh7fVc7V-fXpZ3a8rWxOSK9VZyUnvmCjhup43pGtayjyz0vSGMdP6znouO2q4ZFwoKXvBHe08bYnkNVuim9l3n2L5BbLexkMqWUCzAkglmZCFqmfKpgiQnNf7FHYmHTUl-rtMPZepS5n6p0ytiojNIijwNLj0Z_2P6gusunkU</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Donchenko, S. I.</creator><creator>Denisenko, O. V.</creator><creator>Kaverin, A. M.</creator><creator>Pudlovsky, V. B.</creator><creator>Frolov, A. A.</creator><creator>Bondarenko, A. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20240401</creationdate><title>Carrier frequency phase calibration method for global navigation satellite system signal simulators</title><author>Donchenko, S. I. ; Denisenko, O. V. ; Kaverin, A. M. ; Pudlovsky, V. B. ; Frolov, A. A. ; Bondarenko, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-9bc860de37003bd640b4513f3c8ada33a5fbcf68b1a68367988d76e1bf1508623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analog to digital converters</topic><topic>Analytical Chemistry</topic><topic>Calibration</topic><topic>Carrier frequencies</topic><topic>Characterization and Evaluation of Materials</topic><topic>Control equipment</topic><topic>Error analysis</topic><topic>Frequency ranges</topic><topic>Global navigation satellite system</topic><topic>Measurement Science and Instrumentation</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radio signals</topic><topic>Simulators</topic><topic>Systematic errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donchenko, S. I.</creatorcontrib><creatorcontrib>Denisenko, O. V.</creatorcontrib><creatorcontrib>Kaverin, A. M.</creatorcontrib><creatorcontrib>Pudlovsky, V. B.</creatorcontrib><creatorcontrib>Frolov, A. A.</creatorcontrib><creatorcontrib>Bondarenko, A. S.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Measurement techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donchenko, S. I.</au><au>Denisenko, O. V.</au><au>Kaverin, A. M.</au><au>Pudlovsky, V. B.</au><au>Frolov, A. A.</au><au>Bondarenko, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carrier frequency phase calibration method for global navigation satellite system signal simulators</atitle><jtitle>Measurement techniques</jtitle><stitle>Meas Tech</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>67</volume><issue>1</issue><spage>46</spage><epage>55</epage><pages>46-55</pages><issn>0543-1972</issn><eissn>1573-8906</eissn><abstract>Carrier frequency phase differences of global navigation satellite system (GNSS) signals between multiple antennas are measured in many coordinate and navigation applications. GNSS signal simulators are used for determining and controlling instrumental errors of consumer navigation equipment. Therefore, determining the systematic error of the carrier frequency phase of the generated signals is imperative. On this basis, in this study, a calibration method of GNSS signal simulators based on the refined error model of the generated phase differences between simulator outlets was developed and tested. The proposed method was implemented using a wideband oscilloscope as an analog-to-digital converter. Validation of the simulator calibration method was performed by comparison with the measurement results obtained using the State secondary standard of units of complex transmission coefficients in the range of 0–60 dB and complex reflection coefficients in the range of 0.002–1 in the frequency range of 0.05–65 GHz (registration No. 2.1.ZZT.0210.2015). The proposed simulator calibration method can be used to determine calibration corrections to the phase differences of the carrier frequencies of radio signals reproduced by the simulator with an expanded uncertainty of 1° at a coverage factor of 3. The proposed method provides the required accuracy of generating phase differences of the carrier frequencies of GNSS signals for modern types of simulators.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11018-024-02319-9</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0543-1972 |
ispartof | Measurement techniques, 2024-04, Vol.67 (1), p.46-55 |
issn | 0543-1972 1573-8906 |
language | eng |
recordid | cdi_proquest_journals_3086898378 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analog to digital converters Analytical Chemistry Calibration Carrier frequencies Characterization and Evaluation of Materials Control equipment Error analysis Frequency ranges Global navigation satellite system Measurement Science and Instrumentation Physical Chemistry Physics Physics and Astronomy Radio signals Simulators Systematic errors |
title | Carrier frequency phase calibration method for global navigation satellite system signal simulators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carrier%20frequency%20phase%20calibration%20method%20for%20global%20navigation%20satellite%20system%20signal%20simulators&rft.jtitle=Measurement%20techniques&rft.au=Donchenko,%20S.%20I.&rft.date=2024-04-01&rft.volume=67&rft.issue=1&rft.spage=46&rft.epage=55&rft.pages=46-55&rft.issn=0543-1972&rft.eissn=1573-8906&rft_id=info:doi/10.1007/s11018-024-02319-9&rft_dat=%3Cproquest_cross%3E3086898378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086898378&rft_id=info:pmid/&rfr_iscdi=true |