In situ embedded bismuth nanoparticles among highly porous carbon fibers for efficient carbon dioxide reduction
Electrocatalysis provides an optimal approach for the conversion of carbon dioxide (CO 2 ) into high-value chemicals, thereby presenting a promising avenue toward achieve carbon neutrality. However, addressing the selectivity and stability challenges of metal catalysts in electrolytic reduction rema...
Gespeichert in:
Veröffentlicht in: | Rare metals 2024, Vol.43 (9), p.4312-4320 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4320 |
---|---|
container_issue | 9 |
container_start_page | 4312 |
container_title | Rare metals |
container_volume | 43 |
creator | Guo, Wei-Jian Zhou, Ao Cai, Wen-Wen Zhang, Jin-Tao |
description | Electrocatalysis provides an optimal approach for the conversion of carbon dioxide (CO
2
) into high-value chemicals, thereby presenting a promising avenue toward achieve carbon neutrality. However, addressing the selectivity and stability challenges of metal catalysts in electrolytic reduction remains a daunting task. In this study, the electrospinning method is employed to fabricate porous carbon nanofibers loaded with bismuth nanoparticles with the help of in situ pyrolysis. The porous carbon nanofibers as conductive support would facilitate the dispersion of bismuth active sites while inhibiting their aggregation and promoting the mass transfer, thus enhancing their electrocatalytic activity and stability. Additionally, nitrogen doping induces electron delocalization in bismuth atoms through metal-support interactions, thus enabling efficient adsorption of intermediates for improving selectivity based on the theoretical calculation. Consequently, Bi@PCNF-500 exhibits the exceptional selectivity and stability across a wide range of potential windows. Notably, its faradaic efficiency (FE) of formate reaches 92.7% in H-cell and 94.9% in flow cell, respectively, with good electrocatalytic stability. The in situ characterization and theoretical calculations elucidate the plausible reaction mechanism to obtain basic rules for designing efficient electrocatalyst.
Graphical abstract |
doi_str_mv | 10.1007/s12598-024-02803-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086898306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086898306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4d3963cf86360062b003bb9cc4ffd4c824ae50aff5794a82308e3eb7f39cb51b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK7-AU8Bz9VJk6bpURY_Fha86DkkabKbZZvUpAX33xut4s3DMAPzvDPwFMU1hlsM0NwlXNUtL6GiuTiQsj0pFpizpmwwr0_zDIBLqCt8XlyktAeglDFYFGHtUXLjhEyvTNeZDimX-mncIS99GGQcnT6YhGQf_Bbt3HZ3OKIhxDAlpGVUwSPrlIkJ2RCRsdZpZ_z4u-tc-HCdQdF0kx5d8JfFmZWHZK5--rJ4e3x4XT2Xm5en9ep-U-qqgbGkHWkZ0ZYzwgBYpQCIUq3W1NqOal5RaWqQ1tZNSyWvCHBDjGosabWqsSLL4ma-O8TwPpk0in2Yos8vRWYZbzkBlqlqpnQMKUVjxRBdL-NRYBBfYsUsVmSx4lusaHOIzKGUYb818e_0P6lPBXN9bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086898306</pqid></control><display><type>article</type><title>In situ embedded bismuth nanoparticles among highly porous carbon fibers for efficient carbon dioxide reduction</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Guo, Wei-Jian ; Zhou, Ao ; Cai, Wen-Wen ; Zhang, Jin-Tao</creator><creatorcontrib>Guo, Wei-Jian ; Zhou, Ao ; Cai, Wen-Wen ; Zhang, Jin-Tao</creatorcontrib><description>Electrocatalysis provides an optimal approach for the conversion of carbon dioxide (CO
2
) into high-value chemicals, thereby presenting a promising avenue toward achieve carbon neutrality. However, addressing the selectivity and stability challenges of metal catalysts in electrolytic reduction remains a daunting task. In this study, the electrospinning method is employed to fabricate porous carbon nanofibers loaded with bismuth nanoparticles with the help of in situ pyrolysis. The porous carbon nanofibers as conductive support would facilitate the dispersion of bismuth active sites while inhibiting their aggregation and promoting the mass transfer, thus enhancing their electrocatalytic activity and stability. Additionally, nitrogen doping induces electron delocalization in bismuth atoms through metal-support interactions, thus enabling efficient adsorption of intermediates for improving selectivity based on the theoretical calculation. Consequently, Bi@PCNF-500 exhibits the exceptional selectivity and stability across a wide range of potential windows. Notably, its faradaic efficiency (FE) of formate reaches 92.7% in H-cell and 94.9% in flow cell, respectively, with good electrocatalytic stability. The in situ characterization and theoretical calculations elucidate the plausible reaction mechanism to obtain basic rules for designing efficient electrocatalyst.
Graphical abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-024-02803-9</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Atomic properties ; Biomaterials ; Bismuth ; Carbon dioxide ; Carbon fibers ; Chemistry and Materials Science ; Electrocatalysts ; Energy ; Flow stability ; Mass transfer ; Materials Engineering ; Materials Science ; Metallic Materials ; Nanofibers ; Nanoparticles ; Nanoscale Science and Technology ; Original Article ; Physical Chemistry ; Pyrolysis ; Reaction mechanisms ; Reduction (electrolytic)</subject><ispartof>Rare metals, 2024, Vol.43 (9), p.4312-4320</ispartof><rights>Youke Publishing Co.,Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4d3963cf86360062b003bb9cc4ffd4c824ae50aff5794a82308e3eb7f39cb51b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-024-02803-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-024-02803-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Guo, Wei-Jian</creatorcontrib><creatorcontrib>Zhou, Ao</creatorcontrib><creatorcontrib>Cai, Wen-Wen</creatorcontrib><creatorcontrib>Zhang, Jin-Tao</creatorcontrib><title>In situ embedded bismuth nanoparticles among highly porous carbon fibers for efficient carbon dioxide reduction</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>Electrocatalysis provides an optimal approach for the conversion of carbon dioxide (CO
2
) into high-value chemicals, thereby presenting a promising avenue toward achieve carbon neutrality. However, addressing the selectivity and stability challenges of metal catalysts in electrolytic reduction remains a daunting task. In this study, the electrospinning method is employed to fabricate porous carbon nanofibers loaded with bismuth nanoparticles with the help of in situ pyrolysis. The porous carbon nanofibers as conductive support would facilitate the dispersion of bismuth active sites while inhibiting their aggregation and promoting the mass transfer, thus enhancing their electrocatalytic activity and stability. Additionally, nitrogen doping induces electron delocalization in bismuth atoms through metal-support interactions, thus enabling efficient adsorption of intermediates for improving selectivity based on the theoretical calculation. Consequently, Bi@PCNF-500 exhibits the exceptional selectivity and stability across a wide range of potential windows. Notably, its faradaic efficiency (FE) of formate reaches 92.7% in H-cell and 94.9% in flow cell, respectively, with good electrocatalytic stability. The in situ characterization and theoretical calculations elucidate the plausible reaction mechanism to obtain basic rules for designing efficient electrocatalyst.
Graphical abstract</description><subject>Atomic properties</subject><subject>Biomaterials</subject><subject>Bismuth</subject><subject>Carbon dioxide</subject><subject>Carbon fibers</subject><subject>Chemistry and Materials Science</subject><subject>Electrocatalysts</subject><subject>Energy</subject><subject>Flow stability</subject><subject>Mass transfer</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Nanoscale Science and Technology</subject><subject>Original Article</subject><subject>Physical Chemistry</subject><subject>Pyrolysis</subject><subject>Reaction mechanisms</subject><subject>Reduction (electrolytic)</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouK7-AU8Bz9VJk6bpURY_Fha86DkkabKbZZvUpAX33xut4s3DMAPzvDPwFMU1hlsM0NwlXNUtL6GiuTiQsj0pFpizpmwwr0_zDIBLqCt8XlyktAeglDFYFGHtUXLjhEyvTNeZDimX-mncIS99GGQcnT6YhGQf_Bbt3HZ3OKIhxDAlpGVUwSPrlIkJ2RCRsdZpZ_z4u-tc-HCdQdF0kx5d8JfFmZWHZK5--rJ4e3x4XT2Xm5en9ep-U-qqgbGkHWkZ0ZYzwgBYpQCIUq3W1NqOal5RaWqQ1tZNSyWvCHBDjGosabWqsSLL4ma-O8TwPpk0in2Yos8vRWYZbzkBlqlqpnQMKUVjxRBdL-NRYBBfYsUsVmSx4lusaHOIzKGUYb818e_0P6lPBXN9bw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Guo, Wei-Jian</creator><creator>Zhou, Ao</creator><creator>Cai, Wen-Wen</creator><creator>Zhang, Jin-Tao</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2024</creationdate><title>In situ embedded bismuth nanoparticles among highly porous carbon fibers for efficient carbon dioxide reduction</title><author>Guo, Wei-Jian ; Zhou, Ao ; Cai, Wen-Wen ; Zhang, Jin-Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4d3963cf86360062b003bb9cc4ffd4c824ae50aff5794a82308e3eb7f39cb51b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic properties</topic><topic>Biomaterials</topic><topic>Bismuth</topic><topic>Carbon dioxide</topic><topic>Carbon fibers</topic><topic>Chemistry and Materials Science</topic><topic>Electrocatalysts</topic><topic>Energy</topic><topic>Flow stability</topic><topic>Mass transfer</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Nanoscale Science and Technology</topic><topic>Original Article</topic><topic>Physical Chemistry</topic><topic>Pyrolysis</topic><topic>Reaction mechanisms</topic><topic>Reduction (electrolytic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Wei-Jian</creatorcontrib><creatorcontrib>Zhou, Ao</creatorcontrib><creatorcontrib>Cai, Wen-Wen</creatorcontrib><creatorcontrib>Zhang, Jin-Tao</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Wei-Jian</au><au>Zhou, Ao</au><au>Cai, Wen-Wen</au><au>Zhang, Jin-Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ embedded bismuth nanoparticles among highly porous carbon fibers for efficient carbon dioxide reduction</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2024</date><risdate>2024</risdate><volume>43</volume><issue>9</issue><spage>4312</spage><epage>4320</epage><pages>4312-4320</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>Electrocatalysis provides an optimal approach for the conversion of carbon dioxide (CO
2
) into high-value chemicals, thereby presenting a promising avenue toward achieve carbon neutrality. However, addressing the selectivity and stability challenges of metal catalysts in electrolytic reduction remains a daunting task. In this study, the electrospinning method is employed to fabricate porous carbon nanofibers loaded with bismuth nanoparticles with the help of in situ pyrolysis. The porous carbon nanofibers as conductive support would facilitate the dispersion of bismuth active sites while inhibiting their aggregation and promoting the mass transfer, thus enhancing their electrocatalytic activity and stability. Additionally, nitrogen doping induces electron delocalization in bismuth atoms through metal-support interactions, thus enabling efficient adsorption of intermediates for improving selectivity based on the theoretical calculation. Consequently, Bi@PCNF-500 exhibits the exceptional selectivity and stability across a wide range of potential windows. Notably, its faradaic efficiency (FE) of formate reaches 92.7% in H-cell and 94.9% in flow cell, respectively, with good electrocatalytic stability. The in situ characterization and theoretical calculations elucidate the plausible reaction mechanism to obtain basic rules for designing efficient electrocatalyst.
Graphical abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-024-02803-9</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2024, Vol.43 (9), p.4312-4320 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_journals_3086898306 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Atomic properties Biomaterials Bismuth Carbon dioxide Carbon fibers Chemistry and Materials Science Electrocatalysts Energy Flow stability Mass transfer Materials Engineering Materials Science Metallic Materials Nanofibers Nanoparticles Nanoscale Science and Technology Original Article Physical Chemistry Pyrolysis Reaction mechanisms Reduction (electrolytic) |
title | In situ embedded bismuth nanoparticles among highly porous carbon fibers for efficient carbon dioxide reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20embedded%20bismuth%20nanoparticles%20among%20highly%20porous%20carbon%20fibers%20for%20efficient%20carbon%20dioxide%20reduction&rft.jtitle=Rare%20metals&rft.au=Guo,%20Wei-Jian&rft.date=2024&rft.volume=43&rft.issue=9&rft.spage=4312&rft.epage=4320&rft.pages=4312-4320&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-024-02803-9&rft_dat=%3Cproquest_cross%3E3086898306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086898306&rft_id=info:pmid/&rfr_iscdi=true |