Ceramic-based meta-material absorber with high-temperature stability

With the continuous exploration of uncharted and extreme environments, enhanced temperature robustness of passive devices has become particularly important. In this study, a ceramic-based meta-material absorber with exceptional temperature stability is developed using a fusion design approach that c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals 2024-09, Vol.43 (9), p.4433-4440
Hauptverfasser: Chen, Xing-Cong, Luo, Wei-Jia, Zhao, Run-Ni, Wen, Yong-Zheng, Zhou, Ji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4440
container_issue 9
container_start_page 4433
container_title Rare metals
container_volume 43
creator Chen, Xing-Cong
Luo, Wei-Jia
Zhao, Run-Ni
Wen, Yong-Zheng
Zhou, Ji
description With the continuous exploration of uncharted and extreme environments, enhanced temperature robustness of passive devices has become particularly important. In this study, a ceramic-based meta-material absorber with exceptional temperature stability is developed using a fusion design approach that combines rare metal-based tungsten bronze structural ceramics and meta-materials. Specifically, the absorbance of the meta-material array based on Mie resonance exceeds 49.0% in both waveguides and free space, approaching the theoretical limit. According to impedance analysis, the absorption performance can be distinctly correlated with the dielectric loss ( Q f ). Notably, the high-temperature robustness is verified to still be effective at 400 °C. These advancements in our design allow for the use of monolithic materials in fabricating temperature-stable perfect absorbers, providing greater freedom in the dielectric performance and expanding their potential applications, including in space exploration and 5G millimeter-wave scenarios. Graphical abstract
doi_str_mv 10.1007/s12598-024-02791-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086898297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086898297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-77fe4d3ff32ecc3f6f5c70d43a6a0b661a32644c8b4344129cf391e14e668ca23</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jkY5PsUeonFLzoOWTTSbul261JSum_N7qCNw_DzOF93oGHkGsGtwxA3yXG68ZQ4LKMbhg9nJAJM0pTzUx9Wm4ARqHm7JxcpLQGkFIpmJCHGUbXd562LuGi6jE72ruMsXObyrVpiC3G6tDlVbXqliuasd8VIu8jVim7ttt0-XhJzoLbJLz63VPy8fT4Pnuh87fn19n9nHoOkKnWAeVChCA4ei-CCrXXsJDCKQetUswJrqT0ppVCSsYbH0TDkElUynjHxZTcjL27OHzuMWW7HvZxW15aAUaZxvBGlxQfUz4OKUUMdhe73sWjZWC_bdnRli227I8teyiQGKFUwtslxr_qf6gvvZptwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086898297</pqid></control><display><type>article</type><title>Ceramic-based meta-material absorber with high-temperature stability</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Xing-Cong ; Luo, Wei-Jia ; Zhao, Run-Ni ; Wen, Yong-Zheng ; Zhou, Ji</creator><creatorcontrib>Chen, Xing-Cong ; Luo, Wei-Jia ; Zhao, Run-Ni ; Wen, Yong-Zheng ; Zhou, Ji</creatorcontrib><description>With the continuous exploration of uncharted and extreme environments, enhanced temperature robustness of passive devices has become particularly important. In this study, a ceramic-based meta-material absorber with exceptional temperature stability is developed using a fusion design approach that combines rare metal-based tungsten bronze structural ceramics and meta-materials. Specifically, the absorbance of the meta-material array based on Mie resonance exceeds 49.0% in both waveguides and free space, approaching the theoretical limit. According to impedance analysis, the absorption performance can be distinctly correlated with the dielectric loss ( Q f ). Notably, the high-temperature robustness is verified to still be effective at 400 °C. These advancements in our design allow for the use of monolithic materials in fabricating temperature-stable perfect absorbers, providing greater freedom in the dielectric performance and expanding their potential applications, including in space exploration and 5G millimeter-wave scenarios. Graphical abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-024-02791-w</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Absorbers ; Absorbers (materials) ; Biomaterials ; Ceramics ; Chemistry and Materials Science ; Dielectric loss ; Energy ; Extreme environments ; High temperature ; Materials Engineering ; Materials Science ; Metallic Materials ; Metamaterials ; Millimeter waves ; Monolithic materials ; Nanoscale Science and Technology ; Original Article ; Physical Chemistry ; Robustness ; Space exploration ; Structural stability ; Tungsten bronze ; Waveguides</subject><ispartof>Rare metals, 2024-09, Vol.43 (9), p.4433-4440</ispartof><rights>Youke Publishing Co.,Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-77fe4d3ff32ecc3f6f5c70d43a6a0b661a32644c8b4344129cf391e14e668ca23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-024-02791-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-024-02791-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Xing-Cong</creatorcontrib><creatorcontrib>Luo, Wei-Jia</creatorcontrib><creatorcontrib>Zhao, Run-Ni</creatorcontrib><creatorcontrib>Wen, Yong-Zheng</creatorcontrib><creatorcontrib>Zhou, Ji</creatorcontrib><title>Ceramic-based meta-material absorber with high-temperature stability</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>With the continuous exploration of uncharted and extreme environments, enhanced temperature robustness of passive devices has become particularly important. In this study, a ceramic-based meta-material absorber with exceptional temperature stability is developed using a fusion design approach that combines rare metal-based tungsten bronze structural ceramics and meta-materials. Specifically, the absorbance of the meta-material array based on Mie resonance exceeds 49.0% in both waveguides and free space, approaching the theoretical limit. According to impedance analysis, the absorption performance can be distinctly correlated with the dielectric loss ( Q f ). Notably, the high-temperature robustness is verified to still be effective at 400 °C. These advancements in our design allow for the use of monolithic materials in fabricating temperature-stable perfect absorbers, providing greater freedom in the dielectric performance and expanding their potential applications, including in space exploration and 5G millimeter-wave scenarios. Graphical abstract</description><subject>Absorbers</subject><subject>Absorbers (materials)</subject><subject>Biomaterials</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Dielectric loss</subject><subject>Energy</subject><subject>Extreme environments</subject><subject>High temperature</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metamaterials</subject><subject>Millimeter waves</subject><subject>Monolithic materials</subject><subject>Nanoscale Science and Technology</subject><subject>Original Article</subject><subject>Physical Chemistry</subject><subject>Robustness</subject><subject>Space exploration</subject><subject>Structural stability</subject><subject>Tungsten bronze</subject><subject>Waveguides</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jkY5PsUeonFLzoOWTTSbul261JSum_N7qCNw_DzOF93oGHkGsGtwxA3yXG68ZQ4LKMbhg9nJAJM0pTzUx9Wm4ARqHm7JxcpLQGkFIpmJCHGUbXd562LuGi6jE72ruMsXObyrVpiC3G6tDlVbXqliuasd8VIu8jVim7ttt0-XhJzoLbJLz63VPy8fT4Pnuh87fn19n9nHoOkKnWAeVChCA4ei-CCrXXsJDCKQetUswJrqT0ppVCSsYbH0TDkElUynjHxZTcjL27OHzuMWW7HvZxW15aAUaZxvBGlxQfUz4OKUUMdhe73sWjZWC_bdnRli227I8teyiQGKFUwtslxr_qf6gvvZptwA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Chen, Xing-Cong</creator><creator>Luo, Wei-Jia</creator><creator>Zhao, Run-Ni</creator><creator>Wen, Yong-Zheng</creator><creator>Zhou, Ji</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20240901</creationdate><title>Ceramic-based meta-material absorber with high-temperature stability</title><author>Chen, Xing-Cong ; Luo, Wei-Jia ; Zhao, Run-Ni ; Wen, Yong-Zheng ; Zhou, Ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-77fe4d3ff32ecc3f6f5c70d43a6a0b661a32644c8b4344129cf391e14e668ca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorbers</topic><topic>Absorbers (materials)</topic><topic>Biomaterials</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Dielectric loss</topic><topic>Energy</topic><topic>Extreme environments</topic><topic>High temperature</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metamaterials</topic><topic>Millimeter waves</topic><topic>Monolithic materials</topic><topic>Nanoscale Science and Technology</topic><topic>Original Article</topic><topic>Physical Chemistry</topic><topic>Robustness</topic><topic>Space exploration</topic><topic>Structural stability</topic><topic>Tungsten bronze</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xing-Cong</creatorcontrib><creatorcontrib>Luo, Wei-Jia</creatorcontrib><creatorcontrib>Zhao, Run-Ni</creatorcontrib><creatorcontrib>Wen, Yong-Zheng</creatorcontrib><creatorcontrib>Zhou, Ji</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xing-Cong</au><au>Luo, Wei-Jia</au><au>Zhao, Run-Ni</au><au>Wen, Yong-Zheng</au><au>Zhou, Ji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ceramic-based meta-material absorber with high-temperature stability</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>43</volume><issue>9</issue><spage>4433</spage><epage>4440</epage><pages>4433-4440</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>With the continuous exploration of uncharted and extreme environments, enhanced temperature robustness of passive devices has become particularly important. In this study, a ceramic-based meta-material absorber with exceptional temperature stability is developed using a fusion design approach that combines rare metal-based tungsten bronze structural ceramics and meta-materials. Specifically, the absorbance of the meta-material array based on Mie resonance exceeds 49.0% in both waveguides and free space, approaching the theoretical limit. According to impedance analysis, the absorption performance can be distinctly correlated with the dielectric loss ( Q f ). Notably, the high-temperature robustness is verified to still be effective at 400 °C. These advancements in our design allow for the use of monolithic materials in fabricating temperature-stable perfect absorbers, providing greater freedom in the dielectric performance and expanding their potential applications, including in space exploration and 5G millimeter-wave scenarios. Graphical abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-024-02791-w</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2024-09, Vol.43 (9), p.4433-4440
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_3086898297
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Absorbers
Absorbers (materials)
Biomaterials
Ceramics
Chemistry and Materials Science
Dielectric loss
Energy
Extreme environments
High temperature
Materials Engineering
Materials Science
Metallic Materials
Metamaterials
Millimeter waves
Monolithic materials
Nanoscale Science and Technology
Original Article
Physical Chemistry
Robustness
Space exploration
Structural stability
Tungsten bronze
Waveguides
title Ceramic-based meta-material absorber with high-temperature stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A14%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ceramic-based%20meta-material%20absorber%20with%20high-temperature%20stability&rft.jtitle=Rare%20metals&rft.au=Chen,%20Xing-Cong&rft.date=2024-09-01&rft.volume=43&rft.issue=9&rft.spage=4433&rft.epage=4440&rft.pages=4433-4440&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-024-02791-w&rft_dat=%3Cproquest_cross%3E3086898297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086898297&rft_id=info:pmid/&rfr_iscdi=true