Boosting Crowdsourced Annotation Accuracy: Small Loss Filtering and Augmentation-Driven Training
Crowdsourcing platforms provide an efficient and cost-effective means to acquire the extensive labeled data necessary for supervised learning. However, the labels provided by untrained crowdsourcing workers often contain a considerable amount of noise. Although the application of ground truth infere...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.101745-101755 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101755 |
---|---|
container_issue | |
container_start_page | 101745 |
container_title | IEEE access |
container_volume | 12 |
creator | Fu, Yanming Han, Weigeng Yang, Jingsang Lu, Haodong Yu, Xin |
description | Crowdsourcing platforms provide an efficient and cost-effective means to acquire the extensive labeled data necessary for supervised learning. However, the labels provided by untrained crowdsourcing workers often contain a considerable amount of noise. Although the application of ground truth inference algorithms to deduce integrated labels effectively enhances label quality, a certain level of noise persists. To further diminish the noise within crowdsourced labeling, this paper introduces a novel Small Loss-based Noise Correction algorithm (SLNC). SLNC first filters the crowdsourced data, leveraging the characteristic of neural networks to preferentially fits clean samples, thereby obtaining relatively clean and noisy sets. It then employs data augmentation techniques to enhance the clean set and subsequently trains the corrector on this augmented set to rectify the noisy set. SLNC has been evaluated using 16 simulated and two real-world datasets. The results indicate that SLNC surpasses comparative algorithms in the quality of the final labels. |
doi_str_mv | 10.1109/ACCESS.2024.3432729 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086433298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10606484</ieee_id><doaj_id>oai_doaj_org_article_7cd20a3bf82248eeb86e845456f19272</doaj_id><sourcerecordid>3086433298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-9d7c697fb9cbb429bb2eb2b932ea34a2a2a4d9218c0f6768d68a56a9269a8833</originalsourceid><addsrcrecordid>eNpNkcFPwyAYxRujiWb6F-ihiedO-kEpeKt1U5MlHrY7AqULSweTdpr99zJrzOAA-fJ7D_JektzmaJrniD9UdT1bLqeAgEwxwVACP0uuIKc8wwWm5yf3y-Sm7zcoLhZHRXmVfDx53w_WrdM6-O-m9_ugTZNWzvlBDta7tNJ6H6Q-PKbLrey6dOH7Pp3bbjDhKJMu0vv11riRz56D_TIuXQVpXQSuk4tWdr25-TsnyWo-W9Wv2eL95a2uFpkGxoeMN6WmvGwV10oR4EqBUaA4BiMxkRA3aTjkTKOWlpQ1lMmCSg6US8YwniRvo23j5Ubsgt3KcBBeWvE78GEtZBis7owodQNIYtUyAMKMUYwaRgpS0DbnMb3odT967YL_3Jt-EJsYi4u_FxgxSjAGziKFR0qHmEgw7f-rORLHYsRYjDgWI_6Kiaq7UWWNMScKiihhBP8A1e2J2A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086433298</pqid></control><display><type>article</type><title>Boosting Crowdsourced Annotation Accuracy: Small Loss Filtering and Augmentation-Driven Training</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Fu, Yanming ; Han, Weigeng ; Yang, Jingsang ; Lu, Haodong ; Yu, Xin</creator><creatorcontrib>Fu, Yanming ; Han, Weigeng ; Yang, Jingsang ; Lu, Haodong ; Yu, Xin</creatorcontrib><description>Crowdsourcing platforms provide an efficient and cost-effective means to acquire the extensive labeled data necessary for supervised learning. However, the labels provided by untrained crowdsourcing workers often contain a considerable amount of noise. Although the application of ground truth inference algorithms to deduce integrated labels effectively enhances label quality, a certain level of noise persists. To further diminish the noise within crowdsourced labeling, this paper introduces a novel Small Loss-based Noise Correction algorithm (SLNC). SLNC first filters the crowdsourced data, leveraging the characteristic of neural networks to preferentially fits clean samples, thereby obtaining relatively clean and noisy sets. It then employs data augmentation techniques to enhance the clean set and subsequently trains the corrector on this augmented set to rectify the noisy set. SLNC has been evaluated using 16 simulated and two real-world datasets. The results indicate that SLNC surpasses comparative algorithms in the quality of the final labels.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3432729</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Annotations ; Crowdsourcing ; Data augmentation ; Filtering ; Labels ; Machine learning ; neural network ; Neural networks ; Noise correction ; Noise measurement ; Supervised learning ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.101745-101755</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-9d7c697fb9cbb429bb2eb2b932ea34a2a2a4d9218c0f6768d68a56a9269a8833</cites><orcidid>0009-0007-8189-4809 ; 0009-0006-5112-6908 ; 0000-0002-3651-4770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10606484$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Fu, Yanming</creatorcontrib><creatorcontrib>Han, Weigeng</creatorcontrib><creatorcontrib>Yang, Jingsang</creatorcontrib><creatorcontrib>Lu, Haodong</creatorcontrib><creatorcontrib>Yu, Xin</creatorcontrib><title>Boosting Crowdsourced Annotation Accuracy: Small Loss Filtering and Augmentation-Driven Training</title><title>IEEE access</title><addtitle>Access</addtitle><description>Crowdsourcing platforms provide an efficient and cost-effective means to acquire the extensive labeled data necessary for supervised learning. However, the labels provided by untrained crowdsourcing workers often contain a considerable amount of noise. Although the application of ground truth inference algorithms to deduce integrated labels effectively enhances label quality, a certain level of noise persists. To further diminish the noise within crowdsourced labeling, this paper introduces a novel Small Loss-based Noise Correction algorithm (SLNC). SLNC first filters the crowdsourced data, leveraging the characteristic of neural networks to preferentially fits clean samples, thereby obtaining relatively clean and noisy sets. It then employs data augmentation techniques to enhance the clean set and subsequently trains the corrector on this augmented set to rectify the noisy set. SLNC has been evaluated using 16 simulated and two real-world datasets. The results indicate that SLNC surpasses comparative algorithms in the quality of the final labels.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Crowdsourcing</subject><subject>Data augmentation</subject><subject>Filtering</subject><subject>Labels</subject><subject>Machine learning</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Noise correction</subject><subject>Noise measurement</subject><subject>Supervised learning</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkcFPwyAYxRujiWb6F-ihiedO-kEpeKt1U5MlHrY7AqULSweTdpr99zJrzOAA-fJ7D_JektzmaJrniD9UdT1bLqeAgEwxwVACP0uuIKc8wwWm5yf3y-Sm7zcoLhZHRXmVfDx53w_WrdM6-O-m9_ugTZNWzvlBDta7tNJ6H6Q-PKbLrey6dOH7Pp3bbjDhKJMu0vv11riRz56D_TIuXQVpXQSuk4tWdr25-TsnyWo-W9Wv2eL95a2uFpkGxoeMN6WmvGwV10oR4EqBUaA4BiMxkRA3aTjkTKOWlpQ1lMmCSg6US8YwniRvo23j5Ubsgt3KcBBeWvE78GEtZBis7owodQNIYtUyAMKMUYwaRgpS0DbnMb3odT967YL_3Jt-EJsYi4u_FxgxSjAGziKFR0qHmEgw7f-rORLHYsRYjDgWI_6Kiaq7UWWNMScKiihhBP8A1e2J2A</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Fu, Yanming</creator><creator>Han, Weigeng</creator><creator>Yang, Jingsang</creator><creator>Lu, Haodong</creator><creator>Yu, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-8189-4809</orcidid><orcidid>https://orcid.org/0009-0006-5112-6908</orcidid><orcidid>https://orcid.org/0000-0002-3651-4770</orcidid></search><sort><creationdate>2024</creationdate><title>Boosting Crowdsourced Annotation Accuracy: Small Loss Filtering and Augmentation-Driven Training</title><author>Fu, Yanming ; Han, Weigeng ; Yang, Jingsang ; Lu, Haodong ; Yu, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-9d7c697fb9cbb429bb2eb2b932ea34a2a2a4d9218c0f6768d68a56a9269a8833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Crowdsourcing</topic><topic>Data augmentation</topic><topic>Filtering</topic><topic>Labels</topic><topic>Machine learning</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Noise correction</topic><topic>Noise measurement</topic><topic>Supervised learning</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Yanming</creatorcontrib><creatorcontrib>Han, Weigeng</creatorcontrib><creatorcontrib>Yang, Jingsang</creatorcontrib><creatorcontrib>Lu, Haodong</creatorcontrib><creatorcontrib>Yu, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Yanming</au><au>Han, Weigeng</au><au>Yang, Jingsang</au><au>Lu, Haodong</au><au>Yu, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Crowdsourced Annotation Accuracy: Small Loss Filtering and Augmentation-Driven Training</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>101745</spage><epage>101755</epage><pages>101745-101755</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Crowdsourcing platforms provide an efficient and cost-effective means to acquire the extensive labeled data necessary for supervised learning. However, the labels provided by untrained crowdsourcing workers often contain a considerable amount of noise. Although the application of ground truth inference algorithms to deduce integrated labels effectively enhances label quality, a certain level of noise persists. To further diminish the noise within crowdsourced labeling, this paper introduces a novel Small Loss-based Noise Correction algorithm (SLNC). SLNC first filters the crowdsourced data, leveraging the characteristic of neural networks to preferentially fits clean samples, thereby obtaining relatively clean and noisy sets. It then employs data augmentation techniques to enhance the clean set and subsequently trains the corrector on this augmented set to rectify the noisy set. SLNC has been evaluated using 16 simulated and two real-world datasets. The results indicate that SLNC surpasses comparative algorithms in the quality of the final labels.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3432729</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0007-8189-4809</orcidid><orcidid>https://orcid.org/0009-0006-5112-6908</orcidid><orcidid>https://orcid.org/0000-0002-3651-4770</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.101745-101755 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3086433298 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals |
subjects | Accuracy Algorithms Annotations Crowdsourcing Data augmentation Filtering Labels Machine learning neural network Neural networks Noise correction Noise measurement Supervised learning Training |
title | Boosting Crowdsourced Annotation Accuracy: Small Loss Filtering and Augmentation-Driven Training |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Crowdsourced%20Annotation%20Accuracy:%20Small%20Loss%20Filtering%20and%20Augmentation-Driven%20Training&rft.jtitle=IEEE%20access&rft.au=Fu,%20Yanming&rft.date=2024&rft.volume=12&rft.spage=101745&rft.epage=101755&rft.pages=101745-101755&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3432729&rft_dat=%3Cproquest_cross%3E3086433298%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086433298&rft_id=info:pmid/&rft_ieee_id=10606484&rft_doaj_id=oai_doaj_org_article_7cd20a3bf82248eeb86e845456f19272&rfr_iscdi=true |