Boosting Crowdsourced Annotation Accuracy: Small Loss Filtering and Augmentation-Driven Training

Crowdsourcing platforms provide an efficient and cost-effective means to acquire the extensive labeled data necessary for supervised learning. However, the labels provided by untrained crowdsourcing workers often contain a considerable amount of noise. Although the application of ground truth infere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.101745-101755
Hauptverfasser: Fu, Yanming, Han, Weigeng, Yang, Jingsang, Lu, Haodong, Yu, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101755
container_issue
container_start_page 101745
container_title IEEE access
container_volume 12
creator Fu, Yanming
Han, Weigeng
Yang, Jingsang
Lu, Haodong
Yu, Xin
description Crowdsourcing platforms provide an efficient and cost-effective means to acquire the extensive labeled data necessary for supervised learning. However, the labels provided by untrained crowdsourcing workers often contain a considerable amount of noise. Although the application of ground truth inference algorithms to deduce integrated labels effectively enhances label quality, a certain level of noise persists. To further diminish the noise within crowdsourced labeling, this paper introduces a novel Small Loss-based Noise Correction algorithm (SLNC). SLNC first filters the crowdsourced data, leveraging the characteristic of neural networks to preferentially fits clean samples, thereby obtaining relatively clean and noisy sets. It then employs data augmentation techniques to enhance the clean set and subsequently trains the corrector on this augmented set to rectify the noisy set. SLNC has been evaluated using 16 simulated and two real-world datasets. The results indicate that SLNC surpasses comparative algorithms in the quality of the final labels.
doi_str_mv 10.1109/ACCESS.2024.3432729
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086433298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10606484</ieee_id><doaj_id>oai_doaj_org_article_7cd20a3bf82248eeb86e845456f19272</doaj_id><sourcerecordid>3086433298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-9d7c697fb9cbb429bb2eb2b932ea34a2a2a4d9218c0f6768d68a56a9269a8833</originalsourceid><addsrcrecordid>eNpNkcFPwyAYxRujiWb6F-ihiedO-kEpeKt1U5MlHrY7AqULSweTdpr99zJrzOAA-fJ7D_JektzmaJrniD9UdT1bLqeAgEwxwVACP0uuIKc8wwWm5yf3y-Sm7zcoLhZHRXmVfDx53w_WrdM6-O-m9_ugTZNWzvlBDta7tNJ6H6Q-PKbLrey6dOH7Pp3bbjDhKJMu0vv11riRz56D_TIuXQVpXQSuk4tWdr25-TsnyWo-W9Wv2eL95a2uFpkGxoeMN6WmvGwV10oR4EqBUaA4BiMxkRA3aTjkTKOWlpQ1lMmCSg6US8YwniRvo23j5Ubsgt3KcBBeWvE78GEtZBis7owodQNIYtUyAMKMUYwaRgpS0DbnMb3odT967YL_3Jt-EJsYi4u_FxgxSjAGziKFR0qHmEgw7f-rORLHYsRYjDgWI_6Kiaq7UWWNMScKiihhBP8A1e2J2A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086433298</pqid></control><display><type>article</type><title>Boosting Crowdsourced Annotation Accuracy: Small Loss Filtering and Augmentation-Driven Training</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Fu, Yanming ; Han, Weigeng ; Yang, Jingsang ; Lu, Haodong ; Yu, Xin</creator><creatorcontrib>Fu, Yanming ; Han, Weigeng ; Yang, Jingsang ; Lu, Haodong ; Yu, Xin</creatorcontrib><description>Crowdsourcing platforms provide an efficient and cost-effective means to acquire the extensive labeled data necessary for supervised learning. However, the labels provided by untrained crowdsourcing workers often contain a considerable amount of noise. Although the application of ground truth inference algorithms to deduce integrated labels effectively enhances label quality, a certain level of noise persists. To further diminish the noise within crowdsourced labeling, this paper introduces a novel Small Loss-based Noise Correction algorithm (SLNC). SLNC first filters the crowdsourced data, leveraging the characteristic of neural networks to preferentially fits clean samples, thereby obtaining relatively clean and noisy sets. It then employs data augmentation techniques to enhance the clean set and subsequently trains the corrector on this augmented set to rectify the noisy set. SLNC has been evaluated using 16 simulated and two real-world datasets. The results indicate that SLNC surpasses comparative algorithms in the quality of the final labels.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3432729</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Annotations ; Crowdsourcing ; Data augmentation ; Filtering ; Labels ; Machine learning ; neural network ; Neural networks ; Noise correction ; Noise measurement ; Supervised learning ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.101745-101755</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-9d7c697fb9cbb429bb2eb2b932ea34a2a2a4d9218c0f6768d68a56a9269a8833</cites><orcidid>0009-0007-8189-4809 ; 0009-0006-5112-6908 ; 0000-0002-3651-4770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10606484$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Fu, Yanming</creatorcontrib><creatorcontrib>Han, Weigeng</creatorcontrib><creatorcontrib>Yang, Jingsang</creatorcontrib><creatorcontrib>Lu, Haodong</creatorcontrib><creatorcontrib>Yu, Xin</creatorcontrib><title>Boosting Crowdsourced Annotation Accuracy: Small Loss Filtering and Augmentation-Driven Training</title><title>IEEE access</title><addtitle>Access</addtitle><description>Crowdsourcing platforms provide an efficient and cost-effective means to acquire the extensive labeled data necessary for supervised learning. However, the labels provided by untrained crowdsourcing workers often contain a considerable amount of noise. Although the application of ground truth inference algorithms to deduce integrated labels effectively enhances label quality, a certain level of noise persists. To further diminish the noise within crowdsourced labeling, this paper introduces a novel Small Loss-based Noise Correction algorithm (SLNC). SLNC first filters the crowdsourced data, leveraging the characteristic of neural networks to preferentially fits clean samples, thereby obtaining relatively clean and noisy sets. It then employs data augmentation techniques to enhance the clean set and subsequently trains the corrector on this augmented set to rectify the noisy set. SLNC has been evaluated using 16 simulated and two real-world datasets. The results indicate that SLNC surpasses comparative algorithms in the quality of the final labels.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Crowdsourcing</subject><subject>Data augmentation</subject><subject>Filtering</subject><subject>Labels</subject><subject>Machine learning</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Noise correction</subject><subject>Noise measurement</subject><subject>Supervised learning</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkcFPwyAYxRujiWb6F-ihiedO-kEpeKt1U5MlHrY7AqULSweTdpr99zJrzOAA-fJ7D_JektzmaJrniD9UdT1bLqeAgEwxwVACP0uuIKc8wwWm5yf3y-Sm7zcoLhZHRXmVfDx53w_WrdM6-O-m9_ugTZNWzvlBDta7tNJ6H6Q-PKbLrey6dOH7Pp3bbjDhKJMu0vv11riRz56D_TIuXQVpXQSuk4tWdr25-TsnyWo-W9Wv2eL95a2uFpkGxoeMN6WmvGwV10oR4EqBUaA4BiMxkRA3aTjkTKOWlpQ1lMmCSg6US8YwniRvo23j5Ubsgt3KcBBeWvE78GEtZBis7owodQNIYtUyAMKMUYwaRgpS0DbnMb3odT967YL_3Jt-EJsYi4u_FxgxSjAGziKFR0qHmEgw7f-rORLHYsRYjDgWI_6Kiaq7UWWNMScKiihhBP8A1e2J2A</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Fu, Yanming</creator><creator>Han, Weigeng</creator><creator>Yang, Jingsang</creator><creator>Lu, Haodong</creator><creator>Yu, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-8189-4809</orcidid><orcidid>https://orcid.org/0009-0006-5112-6908</orcidid><orcidid>https://orcid.org/0000-0002-3651-4770</orcidid></search><sort><creationdate>2024</creationdate><title>Boosting Crowdsourced Annotation Accuracy: Small Loss Filtering and Augmentation-Driven Training</title><author>Fu, Yanming ; Han, Weigeng ; Yang, Jingsang ; Lu, Haodong ; Yu, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-9d7c697fb9cbb429bb2eb2b932ea34a2a2a4d9218c0f6768d68a56a9269a8833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Crowdsourcing</topic><topic>Data augmentation</topic><topic>Filtering</topic><topic>Labels</topic><topic>Machine learning</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Noise correction</topic><topic>Noise measurement</topic><topic>Supervised learning</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Yanming</creatorcontrib><creatorcontrib>Han, Weigeng</creatorcontrib><creatorcontrib>Yang, Jingsang</creatorcontrib><creatorcontrib>Lu, Haodong</creatorcontrib><creatorcontrib>Yu, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Yanming</au><au>Han, Weigeng</au><au>Yang, Jingsang</au><au>Lu, Haodong</au><au>Yu, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Crowdsourced Annotation Accuracy: Small Loss Filtering and Augmentation-Driven Training</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>101745</spage><epage>101755</epage><pages>101745-101755</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Crowdsourcing platforms provide an efficient and cost-effective means to acquire the extensive labeled data necessary for supervised learning. However, the labels provided by untrained crowdsourcing workers often contain a considerable amount of noise. Although the application of ground truth inference algorithms to deduce integrated labels effectively enhances label quality, a certain level of noise persists. To further diminish the noise within crowdsourced labeling, this paper introduces a novel Small Loss-based Noise Correction algorithm (SLNC). SLNC first filters the crowdsourced data, leveraging the characteristic of neural networks to preferentially fits clean samples, thereby obtaining relatively clean and noisy sets. It then employs data augmentation techniques to enhance the clean set and subsequently trains the corrector on this augmented set to rectify the noisy set. SLNC has been evaluated using 16 simulated and two real-world datasets. The results indicate that SLNC surpasses comparative algorithms in the quality of the final labels.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3432729</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0007-8189-4809</orcidid><orcidid>https://orcid.org/0009-0006-5112-6908</orcidid><orcidid>https://orcid.org/0000-0002-3651-4770</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.101745-101755
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3086433298
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals
subjects Accuracy
Algorithms
Annotations
Crowdsourcing
Data augmentation
Filtering
Labels
Machine learning
neural network
Neural networks
Noise correction
Noise measurement
Supervised learning
Training
title Boosting Crowdsourced Annotation Accuracy: Small Loss Filtering and Augmentation-Driven Training
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Crowdsourced%20Annotation%20Accuracy:%20Small%20Loss%20Filtering%20and%20Augmentation-Driven%20Training&rft.jtitle=IEEE%20access&rft.au=Fu,%20Yanming&rft.date=2024&rft.volume=12&rft.spage=101745&rft.epage=101755&rft.pages=101745-101755&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3432729&rft_dat=%3Cproquest_cross%3E3086433298%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086433298&rft_id=info:pmid/&rft_ieee_id=10606484&rft_doaj_id=oai_doaj_org_article_7cd20a3bf82248eeb86e845456f19272&rfr_iscdi=true