A Multisource Remote Sensing Identification Method for Coal Fire Zones Based on a Three-Layer Ensemble Learning Model
Spontaneous combustion of coal seams poses significant threats to ecology and human health, making it a global concern. Precise location identification of coal fire burning is vital for disaster management. Traditional methods of identifying fire zones focus on specific indicators, such as temperatu...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2024, Vol.17, p.12666-12684 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12684 |
---|---|
container_issue | |
container_start_page | 12666 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 17 |
creator | Chen, Yu Ding, Kaiwen Suo, Zhihui Tan, Kun Wei, Jun Cao, Fei Sun, Huahai Bu, Mengmeng |
description | Spontaneous combustion of coal seams poses significant threats to ecology and human health, making it a global concern. Precise location identification of coal fire burning is vital for disaster management. Traditional methods of identifying fire zones focus on specific indicators, such as temperature anomalies. However, solely relying on one indicator can easily lead to "heterogeneous homogeneity," and using multiple indicators complicates threshold settings. To address this, this article presents an enhanced ensemble learning model named AdaBoost_RF_StBP for coal fire zone identification. By integrating multimodal remote sensing data, we extracted diverse abnormal features of fire zones. Using a standard deviation ellipse, we categorized feature samples into three fire zone types, which were then analyzed using the proposed model. The combined approach of base and metalearners was applied in coal fire zones located in Jiangjun Gobi, Jiangjun Temple, Sandaoba, and Beishan coal mines. Results show that the multimodal remote sensing data coupled by our model can effectively addresses the "heterogeneous homogeneity" issue. The accuracy of the model in terms of accuracy, precision, recall rate, F 1_score, etc., has been improved from 0.56 to 0.87 of the initial base-learners to 0.8-0.96 of the metalearners. Additionally, the recognition areas of AdaBoost_RF_StBP in Jiangjun Gobi, Jiangjun Temple, and Sandaoba fire areas account for 122.7%, 109.8%, and 115.8% of the actual fire areas, respectively. This underscores the promising potential of the AdaBoost_RF_StBP model for fire zone identification. This model offers valuable insights and guidance for large-scale fire zone monitoring and identification, proving beneficial for precise and efficient fire control. |
doi_str_mv | 10.1109/JSTARS.2024.3425612 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3086423895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10591332</ieee_id><doaj_id>oai_doaj_org_article_eaf072a2dad0409f9c0430d67e4d6b00</doaj_id><sourcerecordid>3086423895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-c7dd147843c8bfb43e6dd6b2fac090a97d5646d5d497f07fba71d23402833f973</originalsourceid><addsrcrecordid>eNpNkU9vEzEQxS0EEqHwCeBgifOG8Z9dr48haiFVIqQmXLhYXnvcOtqsi7059Nt3w1aop5FG7_3eaB4hnxksGQP97XZ_WN3tlxy4XArJ64bxN2TBWc0qVov6LVkwLXTFJMj35EMpR4CGKy0W5Lyiu3M_xpLO2SG9w1Make5xKHG4pxuPwxhDdHaMaaA7HB-SpyFluk62pzcxI_2TBiz0uy3o6aSx9PCQEautfcJMr4eCp65HukWbhwtylzz2H8m7YPuCn17mFfl9c31Y_6y2v35s1qtt5Xirx8op75lUrRSu7UInBTbeNx0P1oEGq5WvG9n42kutAqjQWcU8FxJ4K0TQSlyRzcz1yR7NY44nm59MstH8W6R8b2weo-vRoJ0I3HJvPUjQQTuQAnyjUE6RABPr68x6zOnvGctojtPPhul8I6BtJBetrieVmFUup1Iyhv-pDMylKzN3ZS5dmZeuJteX2RUR8ZWj1kwILp4BzniQJQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086423895</pqid></control><display><type>article</type><title>A Multisource Remote Sensing Identification Method for Coal Fire Zones Based on a Three-Layer Ensemble Learning Model</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Yu ; Ding, Kaiwen ; Suo, Zhihui ; Tan, Kun ; Wei, Jun ; Cao, Fei ; Sun, Huahai ; Bu, Mengmeng</creator><creatorcontrib>Chen, Yu ; Ding, Kaiwen ; Suo, Zhihui ; Tan, Kun ; Wei, Jun ; Cao, Fei ; Sun, Huahai ; Bu, Mengmeng</creatorcontrib><description>Spontaneous combustion of coal seams poses significant threats to ecology and human health, making it a global concern. Precise location identification of coal fire burning is vital for disaster management. Traditional methods of identifying fire zones focus on specific indicators, such as temperature anomalies. However, solely relying on one indicator can easily lead to "heterogeneous homogeneity," and using multiple indicators complicates threshold settings. To address this, this article presents an enhanced ensemble learning model named AdaBoost_RF_StBP for coal fire zone identification. By integrating multimodal remote sensing data, we extracted diverse abnormal features of fire zones. Using a standard deviation ellipse, we categorized feature samples into three fire zone types, which were then analyzed using the proposed model. The combined approach of base and metalearners was applied in coal fire zones located in Jiangjun Gobi, Jiangjun Temple, Sandaoba, and Beishan coal mines. Results show that the multimodal remote sensing data coupled by our model can effectively addresses the "heterogeneous homogeneity" issue. The accuracy of the model in terms of accuracy, precision, recall rate, F 1_score, etc., has been improved from 0.56 to 0.87 of the initial base-learners to 0.8-0.96 of the metalearners. Additionally, the recognition areas of AdaBoost_RF_StBP in Jiangjun Gobi, Jiangjun Temple, and Sandaoba fire areas account for 122.7%, 109.8%, and 115.8% of the actual fire areas, respectively. This underscores the promising potential of the AdaBoost_RF_StBP model for fire zone identification. This model offers valuable insights and guidance for large-scale fire zone monitoring and identification, proving beneficial for precise and efficient fire control.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2024.3425612</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Coal ; Coal fire identification ; Coal mines ; Data mining ; Disaster management ; Emergency preparedness ; Ensemble learning ; Feature extraction ; Fire control ; Homogeneity ; Identification methods ; Indicators ; Machine learning ; Monitoring ; multisource remote sensing ; Remote sensing ; Spontaneous combustion ; Temperature anomalies ; Temperature sensors</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.12666-12684</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-c7dd147843c8bfb43e6dd6b2fac090a97d5646d5d497f07fba71d23402833f973</cites><orcidid>0009-0005-0175-0895 ; 0009-0007-2268-5337 ; 0000-0002-3014-9012 ; 0009-0000-9969-3035 ; 0009-0008-2824-8856 ; 0000-0001-6353-0146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Ding, Kaiwen</creatorcontrib><creatorcontrib>Suo, Zhihui</creatorcontrib><creatorcontrib>Tan, Kun</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><creatorcontrib>Cao, Fei</creatorcontrib><creatorcontrib>Sun, Huahai</creatorcontrib><creatorcontrib>Bu, Mengmeng</creatorcontrib><title>A Multisource Remote Sensing Identification Method for Coal Fire Zones Based on a Three-Layer Ensemble Learning Model</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Spontaneous combustion of coal seams poses significant threats to ecology and human health, making it a global concern. Precise location identification of coal fire burning is vital for disaster management. Traditional methods of identifying fire zones focus on specific indicators, such as temperature anomalies. However, solely relying on one indicator can easily lead to "heterogeneous homogeneity," and using multiple indicators complicates threshold settings. To address this, this article presents an enhanced ensemble learning model named AdaBoost_RF_StBP for coal fire zone identification. By integrating multimodal remote sensing data, we extracted diverse abnormal features of fire zones. Using a standard deviation ellipse, we categorized feature samples into three fire zone types, which were then analyzed using the proposed model. The combined approach of base and metalearners was applied in coal fire zones located in Jiangjun Gobi, Jiangjun Temple, Sandaoba, and Beishan coal mines. Results show that the multimodal remote sensing data coupled by our model can effectively addresses the "heterogeneous homogeneity" issue. The accuracy of the model in terms of accuracy, precision, recall rate, F 1_score, etc., has been improved from 0.56 to 0.87 of the initial base-learners to 0.8-0.96 of the metalearners. Additionally, the recognition areas of AdaBoost_RF_StBP in Jiangjun Gobi, Jiangjun Temple, and Sandaoba fire areas account for 122.7%, 109.8%, and 115.8% of the actual fire areas, respectively. This underscores the promising potential of the AdaBoost_RF_StBP model for fire zone identification. This model offers valuable insights and guidance for large-scale fire zone monitoring and identification, proving beneficial for precise and efficient fire control.</description><subject>Accuracy</subject><subject>Coal</subject><subject>Coal fire identification</subject><subject>Coal mines</subject><subject>Data mining</subject><subject>Disaster management</subject><subject>Emergency preparedness</subject><subject>Ensemble learning</subject><subject>Feature extraction</subject><subject>Fire control</subject><subject>Homogeneity</subject><subject>Identification methods</subject><subject>Indicators</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>multisource remote sensing</subject><subject>Remote sensing</subject><subject>Spontaneous combustion</subject><subject>Temperature anomalies</subject><subject>Temperature sensors</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9vEzEQxS0EEqHwCeBgifOG8Z9dr48haiFVIqQmXLhYXnvcOtqsi7059Nt3w1aop5FG7_3eaB4hnxksGQP97XZ_WN3tlxy4XArJ64bxN2TBWc0qVov6LVkwLXTFJMj35EMpR4CGKy0W5Lyiu3M_xpLO2SG9w1Make5xKHG4pxuPwxhDdHaMaaA7HB-SpyFluk62pzcxI_2TBiz0uy3o6aSx9PCQEautfcJMr4eCp65HukWbhwtylzz2H8m7YPuCn17mFfl9c31Y_6y2v35s1qtt5Xirx8op75lUrRSu7UInBTbeNx0P1oEGq5WvG9n42kutAqjQWcU8FxJ4K0TQSlyRzcz1yR7NY44nm59MstH8W6R8b2weo-vRoJ0I3HJvPUjQQTuQAnyjUE6RABPr68x6zOnvGctojtPPhul8I6BtJBetrieVmFUup1Iyhv-pDMylKzN3ZS5dmZeuJteX2RUR8ZWj1kwILp4BzniQJQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chen, Yu</creator><creator>Ding, Kaiwen</creator><creator>Suo, Zhihui</creator><creator>Tan, Kun</creator><creator>Wei, Jun</creator><creator>Cao, Fei</creator><creator>Sun, Huahai</creator><creator>Bu, Mengmeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-0175-0895</orcidid><orcidid>https://orcid.org/0009-0007-2268-5337</orcidid><orcidid>https://orcid.org/0000-0002-3014-9012</orcidid><orcidid>https://orcid.org/0009-0000-9969-3035</orcidid><orcidid>https://orcid.org/0009-0008-2824-8856</orcidid><orcidid>https://orcid.org/0000-0001-6353-0146</orcidid></search><sort><creationdate>2024</creationdate><title>A Multisource Remote Sensing Identification Method for Coal Fire Zones Based on a Three-Layer Ensemble Learning Model</title><author>Chen, Yu ; Ding, Kaiwen ; Suo, Zhihui ; Tan, Kun ; Wei, Jun ; Cao, Fei ; Sun, Huahai ; Bu, Mengmeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-c7dd147843c8bfb43e6dd6b2fac090a97d5646d5d497f07fba71d23402833f973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Coal</topic><topic>Coal fire identification</topic><topic>Coal mines</topic><topic>Data mining</topic><topic>Disaster management</topic><topic>Emergency preparedness</topic><topic>Ensemble learning</topic><topic>Feature extraction</topic><topic>Fire control</topic><topic>Homogeneity</topic><topic>Identification methods</topic><topic>Indicators</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>multisource remote sensing</topic><topic>Remote sensing</topic><topic>Spontaneous combustion</topic><topic>Temperature anomalies</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Ding, Kaiwen</creatorcontrib><creatorcontrib>Suo, Zhihui</creatorcontrib><creatorcontrib>Tan, Kun</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><creatorcontrib>Cao, Fei</creatorcontrib><creatorcontrib>Sun, Huahai</creatorcontrib><creatorcontrib>Bu, Mengmeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yu</au><au>Ding, Kaiwen</au><au>Suo, Zhihui</au><au>Tan, Kun</au><au>Wei, Jun</au><au>Cao, Fei</au><au>Sun, Huahai</au><au>Bu, Mengmeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multisource Remote Sensing Identification Method for Coal Fire Zones Based on a Three-Layer Ensemble Learning Model</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><spage>12666</spage><epage>12684</epage><pages>12666-12684</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Spontaneous combustion of coal seams poses significant threats to ecology and human health, making it a global concern. Precise location identification of coal fire burning is vital for disaster management. Traditional methods of identifying fire zones focus on specific indicators, such as temperature anomalies. However, solely relying on one indicator can easily lead to "heterogeneous homogeneity," and using multiple indicators complicates threshold settings. To address this, this article presents an enhanced ensemble learning model named AdaBoost_RF_StBP for coal fire zone identification. By integrating multimodal remote sensing data, we extracted diverse abnormal features of fire zones. Using a standard deviation ellipse, we categorized feature samples into three fire zone types, which were then analyzed using the proposed model. The combined approach of base and metalearners was applied in coal fire zones located in Jiangjun Gobi, Jiangjun Temple, Sandaoba, and Beishan coal mines. Results show that the multimodal remote sensing data coupled by our model can effectively addresses the "heterogeneous homogeneity" issue. The accuracy of the model in terms of accuracy, precision, recall rate, F 1_score, etc., has been improved from 0.56 to 0.87 of the initial base-learners to 0.8-0.96 of the metalearners. Additionally, the recognition areas of AdaBoost_RF_StBP in Jiangjun Gobi, Jiangjun Temple, and Sandaoba fire areas account for 122.7%, 109.8%, and 115.8% of the actual fire areas, respectively. This underscores the promising potential of the AdaBoost_RF_StBP model for fire zone identification. This model offers valuable insights and guidance for large-scale fire zone monitoring and identification, proving beneficial for precise and efficient fire control.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3425612</doi><tpages>19</tpages><orcidid>https://orcid.org/0009-0005-0175-0895</orcidid><orcidid>https://orcid.org/0009-0007-2268-5337</orcidid><orcidid>https://orcid.org/0000-0002-3014-9012</orcidid><orcidid>https://orcid.org/0009-0000-9969-3035</orcidid><orcidid>https://orcid.org/0009-0008-2824-8856</orcidid><orcidid>https://orcid.org/0000-0001-6353-0146</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.12666-12684 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_proquest_journals_3086423895 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Coal Coal fire identification Coal mines Data mining Disaster management Emergency preparedness Ensemble learning Feature extraction Fire control Homogeneity Identification methods Indicators Machine learning Monitoring multisource remote sensing Remote sensing Spontaneous combustion Temperature anomalies Temperature sensors |
title | A Multisource Remote Sensing Identification Method for Coal Fire Zones Based on a Three-Layer Ensemble Learning Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multisource%20Remote%20Sensing%20Identification%20Method%20for%20Coal%20Fire%20Zones%20Based%20on%20a%20Three-Layer%20Ensemble%20Learning%20Model&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Chen,%20Yu&rft.date=2024&rft.volume=17&rft.spage=12666&rft.epage=12684&rft.pages=12666-12684&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3425612&rft_dat=%3Cproquest_doaj_%3E3086423895%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086423895&rft_id=info:pmid/&rft_ieee_id=10591332&rft_doaj_id=oai_doaj_org_article_eaf072a2dad0409f9c0430d67e4d6b00&rfr_iscdi=true |