Working fluid selection and performance analysis for multistage ship waste heat recovery based on thermal power generation‐organic Rankine cycle combined cycle

The energy utilization rate of ships is low, and waste heat accounts for most of the energy loss of the main engine. In this work, a new method called the thermal power generation‐organic Rankine cycle cascaded cycle is suggested to recover ships waste heat in a cascade utilization way. When compari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental progress 2024-07, Vol.43 (4), p.n/a
Hauptverfasser: Li, Huaan, Liu, Changxin, Shi, Feixiong, Zhao, Zhenzhen, Xu, Zhenhong, Feng, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Environmental progress
container_volume 43
creator Li, Huaan
Liu, Changxin
Shi, Feixiong
Zhao, Zhenzhen
Xu, Zhenhong
Feng, Xing
description The energy utilization rate of ships is low, and waste heat accounts for most of the energy loss of the main engine. In this work, a new method called the thermal power generation‐organic Rankine cycle cascaded cycle is suggested to recover ships waste heat in a cascade utilization way. When comparing the performances of R245fa and R1234ze as working fluids, factors such as performance simulation, environmental protection, and safety were taken into account. Based on these simulation, the organic working fluid chosen is R245fa. On the basis of the cascaded cycle, the influence of working fluid flow rates on essential performance parameters, such as power‐production cost, power output, thermal efficiency, and waste heat utilization of main engine flue gas is explored. The experimental system performs at its best for all metrics when the working fluid flow rates is 0.0403 kg/s, including power output of 483.25 W, thermal efficiency of 8.34%, power‐production cost of 0.3464 $/kWh, and waste heat utilization of main engine flue gas of 69.05%.
doi_str_mv 10.1002/ep.14398
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086269217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086269217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2548-4a3c69f614639cfd2611fc5ecb8edf08c96898f0541dadecd28d1333426af9c3</originalsourceid><addsrcrecordid>eNp1kM1KAzEQxxdRsFbBRwh48bI12WTTzVFK_YCCIgWPS5pM2tTtZk22lr35CL6Cr-aTmLrizcvM_Icf__lIknOCRwTj7AqaEWFUFAfJgAjG0jHL8eFfzbLj5CSENcacMiEGyeez8y-2XiJTba1GASpQrXU1krVGDXjj_EbWCqKWVRdsQLGDNtuqtaGVS0BhZRu0k6EFtALZIg_KvYHv0EIG0Cg6tSuIHhVq3A48WkINXu5HfL1_OL-UtVXoSdZxCUCqU1WMbrOISvfyNDkysgpw9puHyfxmOp_cpbOH2_vJ9SxVWc6KlEmquDCcME6FMjrjhBiVg1oUoA0ulOCFKAzOGdFSg9JZoQmllGVcGqHoMLnobRvvXrcQ2nLttj4eHUqKC55xkZFxpC57SnkXggdTNt5upO9Kgsv9_0toyp__RzTt0Z2toPuXK6ePPf8N8E-LdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086269217</pqid></control><display><type>article</type><title>Working fluid selection and performance analysis for multistage ship waste heat recovery based on thermal power generation‐organic Rankine cycle combined cycle</title><source>Access via Wiley Online Library</source><creator>Li, Huaan ; Liu, Changxin ; Shi, Feixiong ; Zhao, Zhenzhen ; Xu, Zhenhong ; Feng, Xing</creator><creatorcontrib>Li, Huaan ; Liu, Changxin ; Shi, Feixiong ; Zhao, Zhenzhen ; Xu, Zhenhong ; Feng, Xing</creatorcontrib><description>The energy utilization rate of ships is low, and waste heat accounts for most of the energy loss of the main engine. In this work, a new method called the thermal power generation‐organic Rankine cycle cascaded cycle is suggested to recover ships waste heat in a cascade utilization way. When comparing the performances of R245fa and R1234ze as working fluids, factors such as performance simulation, environmental protection, and safety were taken into account. Based on these simulation, the organic working fluid chosen is R245fa. On the basis of the cascaded cycle, the influence of working fluid flow rates on essential performance parameters, such as power‐production cost, power output, thermal efficiency, and waste heat utilization of main engine flue gas is explored. The experimental system performs at its best for all metrics when the working fluid flow rates is 0.0403 kg/s, including power output of 483.25 W, thermal efficiency of 8.34%, power‐production cost of 0.3464 $/kWh, and waste heat utilization of main engine flue gas of 69.05%.</description><identifier>ISSN: 1944-7442</identifier><identifier>EISSN: 1944-7450</identifier><identifier>DOI: 10.1002/ep.14398</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>cascaded utilization ; Combined cycle engines ; Combined cycle power generation ; Energy loss ; Energy utilization ; Environmental protection ; Flow rates ; Flow velocity ; Flue gas ; Fluid flow ; Heat ; Heat recovery ; Production costs ; Rankine cycle engines ; Ships ; ships waste heat ; TEG‐ORC cascaded cycle ; Thermal power ; Thermal utilization ; Thermodynamic efficiency ; Thermoelectricity ; Waste heat ; Waste heat recovery ; Waste recovery ; working fluid flow rates ; Working fluids</subject><ispartof>Environmental progress, 2024-07, Vol.43 (4), p.n/a</ispartof><rights>2024 American Institute of Chemical Engineers.</rights><rights>2024 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2548-4a3c69f614639cfd2611fc5ecb8edf08c96898f0541dadecd28d1333426af9c3</cites><orcidid>0000-0002-4116-9983 ; 0000-0002-4748-1265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fep.14398$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fep.14398$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Huaan</creatorcontrib><creatorcontrib>Liu, Changxin</creatorcontrib><creatorcontrib>Shi, Feixiong</creatorcontrib><creatorcontrib>Zhao, Zhenzhen</creatorcontrib><creatorcontrib>Xu, Zhenhong</creatorcontrib><creatorcontrib>Feng, Xing</creatorcontrib><title>Working fluid selection and performance analysis for multistage ship waste heat recovery based on thermal power generation‐organic Rankine cycle combined cycle</title><title>Environmental progress</title><description>The energy utilization rate of ships is low, and waste heat accounts for most of the energy loss of the main engine. In this work, a new method called the thermal power generation‐organic Rankine cycle cascaded cycle is suggested to recover ships waste heat in a cascade utilization way. When comparing the performances of R245fa and R1234ze as working fluids, factors such as performance simulation, environmental protection, and safety were taken into account. Based on these simulation, the organic working fluid chosen is R245fa. On the basis of the cascaded cycle, the influence of working fluid flow rates on essential performance parameters, such as power‐production cost, power output, thermal efficiency, and waste heat utilization of main engine flue gas is explored. The experimental system performs at its best for all metrics when the working fluid flow rates is 0.0403 kg/s, including power output of 483.25 W, thermal efficiency of 8.34%, power‐production cost of 0.3464 $/kWh, and waste heat utilization of main engine flue gas of 69.05%.</description><subject>cascaded utilization</subject><subject>Combined cycle engines</subject><subject>Combined cycle power generation</subject><subject>Energy loss</subject><subject>Energy utilization</subject><subject>Environmental protection</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Flue gas</subject><subject>Fluid flow</subject><subject>Heat</subject><subject>Heat recovery</subject><subject>Production costs</subject><subject>Rankine cycle engines</subject><subject>Ships</subject><subject>ships waste heat</subject><subject>TEG‐ORC cascaded cycle</subject><subject>Thermal power</subject><subject>Thermal utilization</subject><subject>Thermodynamic efficiency</subject><subject>Thermoelectricity</subject><subject>Waste heat</subject><subject>Waste heat recovery</subject><subject>Waste recovery</subject><subject>working fluid flow rates</subject><subject>Working fluids</subject><issn>1944-7442</issn><issn>1944-7450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEQxxdRsFbBRwh48bI12WTTzVFK_YCCIgWPS5pM2tTtZk22lr35CL6Cr-aTmLrizcvM_Icf__lIknOCRwTj7AqaEWFUFAfJgAjG0jHL8eFfzbLj5CSENcacMiEGyeez8y-2XiJTba1GASpQrXU1krVGDXjj_EbWCqKWVRdsQLGDNtuqtaGVS0BhZRu0k6EFtALZIg_KvYHv0EIG0Cg6tSuIHhVq3A48WkINXu5HfL1_OL-UtVXoSdZxCUCqU1WMbrOISvfyNDkysgpw9puHyfxmOp_cpbOH2_vJ9SxVWc6KlEmquDCcME6FMjrjhBiVg1oUoA0ulOCFKAzOGdFSg9JZoQmllGVcGqHoMLnobRvvXrcQ2nLttj4eHUqKC55xkZFxpC57SnkXggdTNt5upO9Kgsv9_0toyp__RzTt0Z2toPuXK6ePPf8N8E-LdA</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Li, Huaan</creator><creator>Liu, Changxin</creator><creator>Shi, Feixiong</creator><creator>Zhao, Zhenzhen</creator><creator>Xu, Zhenhong</creator><creator>Feng, Xing</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons, Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4116-9983</orcidid><orcidid>https://orcid.org/0000-0002-4748-1265</orcidid></search><sort><creationdate>202407</creationdate><title>Working fluid selection and performance analysis for multistage ship waste heat recovery based on thermal power generation‐organic Rankine cycle combined cycle</title><author>Li, Huaan ; Liu, Changxin ; Shi, Feixiong ; Zhao, Zhenzhen ; Xu, Zhenhong ; Feng, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2548-4a3c69f614639cfd2611fc5ecb8edf08c96898f0541dadecd28d1333426af9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cascaded utilization</topic><topic>Combined cycle engines</topic><topic>Combined cycle power generation</topic><topic>Energy loss</topic><topic>Energy utilization</topic><topic>Environmental protection</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Flue gas</topic><topic>Fluid flow</topic><topic>Heat</topic><topic>Heat recovery</topic><topic>Production costs</topic><topic>Rankine cycle engines</topic><topic>Ships</topic><topic>ships waste heat</topic><topic>TEG‐ORC cascaded cycle</topic><topic>Thermal power</topic><topic>Thermal utilization</topic><topic>Thermodynamic efficiency</topic><topic>Thermoelectricity</topic><topic>Waste heat</topic><topic>Waste heat recovery</topic><topic>Waste recovery</topic><topic>working fluid flow rates</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huaan</creatorcontrib><creatorcontrib>Liu, Changxin</creatorcontrib><creatorcontrib>Shi, Feixiong</creatorcontrib><creatorcontrib>Zhao, Zhenzhen</creatorcontrib><creatorcontrib>Xu, Zhenhong</creatorcontrib><creatorcontrib>Feng, Xing</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huaan</au><au>Liu, Changxin</au><au>Shi, Feixiong</au><au>Zhao, Zhenzhen</au><au>Xu, Zhenhong</au><au>Feng, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Working fluid selection and performance analysis for multistage ship waste heat recovery based on thermal power generation‐organic Rankine cycle combined cycle</atitle><jtitle>Environmental progress</jtitle><date>2024-07</date><risdate>2024</risdate><volume>43</volume><issue>4</issue><epage>n/a</epage><issn>1944-7442</issn><eissn>1944-7450</eissn><abstract>The energy utilization rate of ships is low, and waste heat accounts for most of the energy loss of the main engine. In this work, a new method called the thermal power generation‐organic Rankine cycle cascaded cycle is suggested to recover ships waste heat in a cascade utilization way. When comparing the performances of R245fa and R1234ze as working fluids, factors such as performance simulation, environmental protection, and safety were taken into account. Based on these simulation, the organic working fluid chosen is R245fa. On the basis of the cascaded cycle, the influence of working fluid flow rates on essential performance parameters, such as power‐production cost, power output, thermal efficiency, and waste heat utilization of main engine flue gas is explored. The experimental system performs at its best for all metrics when the working fluid flow rates is 0.0403 kg/s, including power output of 483.25 W, thermal efficiency of 8.34%, power‐production cost of 0.3464 $/kWh, and waste heat utilization of main engine flue gas of 69.05%.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ep.14398</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4116-9983</orcidid><orcidid>https://orcid.org/0000-0002-4748-1265</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-7442
ispartof Environmental progress, 2024-07, Vol.43 (4), p.n/a
issn 1944-7442
1944-7450
language eng
recordid cdi_proquest_journals_3086269217
source Access via Wiley Online Library
subjects cascaded utilization
Combined cycle engines
Combined cycle power generation
Energy loss
Energy utilization
Environmental protection
Flow rates
Flow velocity
Flue gas
Fluid flow
Heat
Heat recovery
Production costs
Rankine cycle engines
Ships
ships waste heat
TEG‐ORC cascaded cycle
Thermal power
Thermal utilization
Thermodynamic efficiency
Thermoelectricity
Waste heat
Waste heat recovery
Waste recovery
working fluid flow rates
Working fluids
title Working fluid selection and performance analysis for multistage ship waste heat recovery based on thermal power generation‐organic Rankine cycle combined cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Working%20fluid%20selection%20and%20performance%20analysis%20for%20multistage%20ship%20waste%20heat%20recovery%20based%20on%20thermal%20power%20generation%E2%80%90organic%20Rankine%20cycle%20combined%20cycle&rft.jtitle=Environmental%20progress&rft.au=Li,%20Huaan&rft.date=2024-07&rft.volume=43&rft.issue=4&rft.epage=n/a&rft.issn=1944-7442&rft.eissn=1944-7450&rft_id=info:doi/10.1002/ep.14398&rft_dat=%3Cproquest_cross%3E3086269217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086269217&rft_id=info:pmid/&rfr_iscdi=true