Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions
Many studies using quantile regressions (QRs) have found that downside risk to output growth varies more than upside risk. We show that Bayesian vector autoregressions (BVARs) with stochastic volatility are able to capture tail risks in forecast distributions. Even though the one‐step‐ahead conditio...
Gespeichert in:
Veröffentlicht in: | Journal of money, credit and banking credit and banking, 2024-08, Vol.56 (5), p.1099-1127 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1127 |
---|---|
container_issue | 5 |
container_start_page | 1099 |
container_title | Journal of money, credit and banking |
container_volume | 56 |
creator | CARRIERO, ANDREA CLARK, TODD E. MARCELLINO, MASSIMILIANO |
description | Many studies using quantile regressions (QRs) have found that downside risk to output growth varies more than upside risk. We show that Bayesian vector autoregressions (BVARs) with stochastic volatility are able to capture tail risks in forecast distributions. Even though the one‐step‐ahead conditional predictive distributions from the conventional stochastic volatility specification are symmetric, forecasts of downside risks to output growth are more variable than upside risks, and the reverse applies in the case of inflation and unemployment. Overall, BVAR models perform comparably to QR for estimating and forecasting tail risks, complementing BVARs' established performance for forecasting and structural analysis. |
doi_str_mv | 10.1111/jmcb.13121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086248795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086248795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3911-97f90edaf73fb48d3f9e84dc25d2e69d9739a005240fbb54c69d4334f79b54fc3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsbnyDgTpia21yybId6KS2CVLchk0lqajtTkxnK7HwEn9EnMXUEd57FOZzDx3_4fwAuMRrhUDfrrSpGmGKCj8AAxzSLWIKTYzBAiJCIZCk_BWferxFCPGZ4AGa53DWts9UKLqRy9dfH51TVVb21Ci6l3cAn69883NvmFU5kp72VFXzRqqkdHLeh65XT3tu68ufgxMiN1xe_cwieb6fL_D6aP9495ON5pCjHOOKp4UiX0qTUFCwrqeE6Y6UicUl0wkueUi4RiglDpihipsKNUcpMysNmFB2Cq1535-r3VvtGrOvWVeGloChLCAsu40Bd91Qw5b3TRuyc3UrXCYzEIStxyEr8ZBVg2MM6eLf-D-WIU5Tg7KCHe2RvN7r7R0zMFvmkl_0GCw129Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086248795</pqid></control><display><type>article</type><title>Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>CARRIERO, ANDREA ; CLARK, TODD E. ; MARCELLINO, MASSIMILIANO</creator><creatorcontrib>CARRIERO, ANDREA ; CLARK, TODD E. ; MARCELLINO, MASSIMILIANO</creatorcontrib><description>Many studies using quantile regressions (QRs) have found that downside risk to output growth varies more than upside risk. We show that Bayesian vector autoregressions (BVARs) with stochastic volatility are able to capture tail risks in forecast distributions. Even though the one‐step‐ahead conditional predictive distributions from the conventional stochastic volatility specification are symmetric, forecasts of downside risks to output growth are more variable than upside risks, and the reverse applies in the case of inflation and unemployment. Overall, BVAR models perform comparably to QR for estimating and forecasting tail risks, complementing BVARs' established performance for forecasting and structural analysis.</description><identifier>ISSN: 0022-2879</identifier><identifier>EISSN: 1538-4616</identifier><identifier>DOI: 10.1111/jmcb.13121</identifier><language>eng</language><publisher>Columbus: Ohio State University Press</publisher><subject>asymmetries ; Bayesian analysis ; downside risk ; Forecasting ; Inflation ; Specification ; Structural analysis ; Unemployment ; Volatility</subject><ispartof>Journal of money, credit and banking, 2024-08, Vol.56 (5), p.1099-1127</ispartof><rights>2023 The Ohio State University.</rights><rights>2024 The Ohio State University.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3911-97f90edaf73fb48d3f9e84dc25d2e69d9739a005240fbb54c69d4334f79b54fc3</citedby><cites>FETCH-LOGICAL-c3911-97f90edaf73fb48d3f9e84dc25d2e69d9739a005240fbb54c69d4334f79b54fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjmcb.13121$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjmcb.13121$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>CARRIERO, ANDREA</creatorcontrib><creatorcontrib>CLARK, TODD E.</creatorcontrib><creatorcontrib>MARCELLINO, MASSIMILIANO</creatorcontrib><title>Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions</title><title>Journal of money, credit and banking</title><description>Many studies using quantile regressions (QRs) have found that downside risk to output growth varies more than upside risk. We show that Bayesian vector autoregressions (BVARs) with stochastic volatility are able to capture tail risks in forecast distributions. Even though the one‐step‐ahead conditional predictive distributions from the conventional stochastic volatility specification are symmetric, forecasts of downside risks to output growth are more variable than upside risks, and the reverse applies in the case of inflation and unemployment. Overall, BVAR models perform comparably to QR for estimating and forecasting tail risks, complementing BVARs' established performance for forecasting and structural analysis.</description><subject>asymmetries</subject><subject>Bayesian analysis</subject><subject>downside risk</subject><subject>Forecasting</subject><subject>Inflation</subject><subject>Specification</subject><subject>Structural analysis</subject><subject>Unemployment</subject><subject>Volatility</subject><issn>0022-2879</issn><issn>1538-4616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsbnyDgTpia21yybId6KS2CVLchk0lqajtTkxnK7HwEn9EnMXUEd57FOZzDx3_4fwAuMRrhUDfrrSpGmGKCj8AAxzSLWIKTYzBAiJCIZCk_BWferxFCPGZ4AGa53DWts9UKLqRy9dfH51TVVb21Ci6l3cAn69883NvmFU5kp72VFXzRqqkdHLeh65XT3tu68ufgxMiN1xe_cwieb6fL_D6aP9495ON5pCjHOOKp4UiX0qTUFCwrqeE6Y6UicUl0wkueUi4RiglDpihipsKNUcpMysNmFB2Cq1535-r3VvtGrOvWVeGloChLCAsu40Bd91Qw5b3TRuyc3UrXCYzEIStxyEr8ZBVg2MM6eLf-D-WIU5Tg7KCHe2RvN7r7R0zMFvmkl_0GCw129Q</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>CARRIERO, ANDREA</creator><creator>CLARK, TODD E.</creator><creator>MARCELLINO, MASSIMILIANO</creator><general>Ohio State University Press</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>202408</creationdate><title>Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions</title><author>CARRIERO, ANDREA ; CLARK, TODD E. ; MARCELLINO, MASSIMILIANO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3911-97f90edaf73fb48d3f9e84dc25d2e69d9739a005240fbb54c69d4334f79b54fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>asymmetries</topic><topic>Bayesian analysis</topic><topic>downside risk</topic><topic>Forecasting</topic><topic>Inflation</topic><topic>Specification</topic><topic>Structural analysis</topic><topic>Unemployment</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CARRIERO, ANDREA</creatorcontrib><creatorcontrib>CLARK, TODD E.</creatorcontrib><creatorcontrib>MARCELLINO, MASSIMILIANO</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of money, credit and banking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CARRIERO, ANDREA</au><au>CLARK, TODD E.</au><au>MARCELLINO, MASSIMILIANO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions</atitle><jtitle>Journal of money, credit and banking</jtitle><date>2024-08</date><risdate>2024</risdate><volume>56</volume><issue>5</issue><spage>1099</spage><epage>1127</epage><pages>1099-1127</pages><issn>0022-2879</issn><eissn>1538-4616</eissn><abstract>Many studies using quantile regressions (QRs) have found that downside risk to output growth varies more than upside risk. We show that Bayesian vector autoregressions (BVARs) with stochastic volatility are able to capture tail risks in forecast distributions. Even though the one‐step‐ahead conditional predictive distributions from the conventional stochastic volatility specification are symmetric, forecasts of downside risks to output growth are more variable than upside risks, and the reverse applies in the case of inflation and unemployment. Overall, BVAR models perform comparably to QR for estimating and forecasting tail risks, complementing BVARs' established performance for forecasting and structural analysis.</abstract><cop>Columbus</cop><pub>Ohio State University Press</pub><doi>10.1111/jmcb.13121</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2879 |
ispartof | Journal of money, credit and banking, 2024-08, Vol.56 (5), p.1099-1127 |
issn | 0022-2879 1538-4616 |
language | eng |
recordid | cdi_proquest_journals_3086248795 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | asymmetries Bayesian analysis downside risk Forecasting Inflation Specification Structural analysis Unemployment Volatility |
title | Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capturing%20Macro%E2%80%90Economic%20Tail%20Risks%20with%20Bayesian%20Vector%20Autoregressions&rft.jtitle=Journal%20of%20money,%20credit%20and%20banking&rft.au=CARRIERO,%20ANDREA&rft.date=2024-08&rft.volume=56&rft.issue=5&rft.spage=1099&rft.epage=1127&rft.pages=1099-1127&rft.issn=0022-2879&rft.eissn=1538-4616&rft_id=info:doi/10.1111/jmcb.13121&rft_dat=%3Cproquest_cross%3E3086248795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086248795&rft_id=info:pmid/&rfr_iscdi=true |