Improved physics-informed neural network in mitigating gradient related failures

Physics-informed neural networks (PINNs) integrate fundamental physical principles with advanced data-driven techniques, driving significant advancements in scientific computing. However, PINNs face persistent challenges with stiffness in gradient flow, which limits their predictive capabilities. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Niu, Pancheng, Chen, Yongming, Guo, Jun, Zhou, Yuqian, Feng, Minfu, Shi, Yanchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Niu, Pancheng
Chen, Yongming
Guo, Jun
Zhou, Yuqian
Feng, Minfu
Shi, Yanchao
description Physics-informed neural networks (PINNs) integrate fundamental physical principles with advanced data-driven techniques, driving significant advancements in scientific computing. However, PINNs face persistent challenges with stiffness in gradient flow, which limits their predictive capabilities. This paper presents an improved PINN (I-PINN) to mitigate gradient-related failures. The core of I-PINN is to combine the respective strengths of neural networks with an improved architecture and adaptive weights containingupper bounds. The capability to enhance accuracy by at least one order of magnitude and accelerate convergence, without introducing extra computational complexity relative to the baseline model, is achieved by I-PINN. Numerical experiments with a variety of benchmarks illustrate the improved accuracy and generalization of I-PINN. The supporting data and code are accessible at https://github.com/PanChengN/I-PINN.git, enabling broader research engagement.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3086142759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086142759</sourcerecordid><originalsourceid>FETCH-proquest_journals_30861427593</originalsourceid><addsrcrecordid>eNqNjb0KwjAURoMgWLTvEHAupEn_nEXRzcG9BJvWW9Ok3iSKb28GH8DpwPkOfAuScCHyrCk4X5HUuZExxqual6VIyOU8zWhfqqPz_ePg5jIwvcUpCqMCSh3h3xYfFAydwMMgPZiBDig7UMZTVFr6WPcSdEDlNmTZS-1U-uOabI-H6_6UxZtnUM63ow1o4tQK1lR5wetyJ_6rvvh1QBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086142759</pqid></control><display><type>article</type><title>Improved physics-informed neural network in mitigating gradient related failures</title><source>Free E- Journals</source><creator>Niu, Pancheng ; Chen, Yongming ; Guo, Jun ; Zhou, Yuqian ; Feng, Minfu ; Shi, Yanchao</creator><creatorcontrib>Niu, Pancheng ; Chen, Yongming ; Guo, Jun ; Zhou, Yuqian ; Feng, Minfu ; Shi, Yanchao</creatorcontrib><description>Physics-informed neural networks (PINNs) integrate fundamental physical principles with advanced data-driven techniques, driving significant advancements in scientific computing. However, PINNs face persistent challenges with stiffness in gradient flow, which limits their predictive capabilities. This paper presents an improved PINN (I-PINN) to mitigate gradient-related failures. The core of I-PINN is to combine the respective strengths of neural networks with an improved architecture and adaptive weights containingupper bounds. The capability to enhance accuracy by at least one order of magnitude and accelerate convergence, without introducing extra computational complexity relative to the baseline model, is achieved by I-PINN. Numerical experiments with a variety of benchmarks illustrate the improved accuracy and generalization of I-PINN. The supporting data and code are accessible at https://github.com/PanChengN/I-PINN.git, enabling broader research engagement.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Gradient flow ; Neural networks</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Niu, Pancheng</creatorcontrib><creatorcontrib>Chen, Yongming</creatorcontrib><creatorcontrib>Guo, Jun</creatorcontrib><creatorcontrib>Zhou, Yuqian</creatorcontrib><creatorcontrib>Feng, Minfu</creatorcontrib><creatorcontrib>Shi, Yanchao</creatorcontrib><title>Improved physics-informed neural network in mitigating gradient related failures</title><title>arXiv.org</title><description>Physics-informed neural networks (PINNs) integrate fundamental physical principles with advanced data-driven techniques, driving significant advancements in scientific computing. However, PINNs face persistent challenges with stiffness in gradient flow, which limits their predictive capabilities. This paper presents an improved PINN (I-PINN) to mitigate gradient-related failures. The core of I-PINN is to combine the respective strengths of neural networks with an improved architecture and adaptive weights containingupper bounds. The capability to enhance accuracy by at least one order of magnitude and accelerate convergence, without introducing extra computational complexity relative to the baseline model, is achieved by I-PINN. Numerical experiments with a variety of benchmarks illustrate the improved accuracy and generalization of I-PINN. The supporting data and code are accessible at https://github.com/PanChengN/I-PINN.git, enabling broader research engagement.</description><subject>Accuracy</subject><subject>Gradient flow</subject><subject>Neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjb0KwjAURoMgWLTvEHAupEn_nEXRzcG9BJvWW9Ok3iSKb28GH8DpwPkOfAuScCHyrCk4X5HUuZExxqual6VIyOU8zWhfqqPz_ePg5jIwvcUpCqMCSh3h3xYfFAydwMMgPZiBDig7UMZTVFr6WPcSdEDlNmTZS-1U-uOabI-H6_6UxZtnUM63ow1o4tQK1lR5wetyJ_6rvvh1QBg</recordid><startdate>20240728</startdate><enddate>20240728</enddate><creator>Niu, Pancheng</creator><creator>Chen, Yongming</creator><creator>Guo, Jun</creator><creator>Zhou, Yuqian</creator><creator>Feng, Minfu</creator><creator>Shi, Yanchao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240728</creationdate><title>Improved physics-informed neural network in mitigating gradient related failures</title><author>Niu, Pancheng ; Chen, Yongming ; Guo, Jun ; Zhou, Yuqian ; Feng, Minfu ; Shi, Yanchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30861427593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Gradient flow</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Niu, Pancheng</creatorcontrib><creatorcontrib>Chen, Yongming</creatorcontrib><creatorcontrib>Guo, Jun</creatorcontrib><creatorcontrib>Zhou, Yuqian</creatorcontrib><creatorcontrib>Feng, Minfu</creatorcontrib><creatorcontrib>Shi, Yanchao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Pancheng</au><au>Chen, Yongming</au><au>Guo, Jun</au><au>Zhou, Yuqian</au><au>Feng, Minfu</au><au>Shi, Yanchao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improved physics-informed neural network in mitigating gradient related failures</atitle><jtitle>arXiv.org</jtitle><date>2024-07-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Physics-informed neural networks (PINNs) integrate fundamental physical principles with advanced data-driven techniques, driving significant advancements in scientific computing. However, PINNs face persistent challenges with stiffness in gradient flow, which limits their predictive capabilities. This paper presents an improved PINN (I-PINN) to mitigate gradient-related failures. The core of I-PINN is to combine the respective strengths of neural networks with an improved architecture and adaptive weights containingupper bounds. The capability to enhance accuracy by at least one order of magnitude and accelerate convergence, without introducing extra computational complexity relative to the baseline model, is achieved by I-PINN. Numerical experiments with a variety of benchmarks illustrate the improved accuracy and generalization of I-PINN. The supporting data and code are accessible at https://github.com/PanChengN/I-PINN.git, enabling broader research engagement.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3086142759
source Free E- Journals
subjects Accuracy
Gradient flow
Neural networks
title Improved physics-informed neural network in mitigating gradient related failures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improved%20physics-informed%20neural%20network%20in%20mitigating%20gradient%20related%20failures&rft.jtitle=arXiv.org&rft.au=Niu,%20Pancheng&rft.date=2024-07-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3086142759%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086142759&rft_id=info:pmid/&rfr_iscdi=true