Improved physics-informed neural network in mitigating gradient related failures
Physics-informed neural networks (PINNs) integrate fundamental physical principles with advanced data-driven techniques, driving significant advancements in scientific computing. However, PINNs face persistent challenges with stiffness in gradient flow, which limits their predictive capabilities. Th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Niu, Pancheng Chen, Yongming Guo, Jun Zhou, Yuqian Feng, Minfu Shi, Yanchao |
description | Physics-informed neural networks (PINNs) integrate fundamental physical principles with advanced data-driven techniques, driving significant advancements in scientific computing. However, PINNs face persistent challenges with stiffness in gradient flow, which limits their predictive capabilities. This paper presents an improved PINN (I-PINN) to mitigate gradient-related failures. The core of I-PINN is to combine the respective strengths of neural networks with an improved architecture and adaptive weights containingupper bounds. The capability to enhance accuracy by at least one order of magnitude and accelerate convergence, without introducing extra computational complexity relative to the baseline model, is achieved by I-PINN. Numerical experiments with a variety of benchmarks illustrate the improved accuracy and generalization of I-PINN. The supporting data and code are accessible at https://github.com/PanChengN/I-PINN.git, enabling broader research engagement. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3086142759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086142759</sourcerecordid><originalsourceid>FETCH-proquest_journals_30861427593</originalsourceid><addsrcrecordid>eNqNjb0KwjAURoMgWLTvEHAupEn_nEXRzcG9BJvWW9Ok3iSKb28GH8DpwPkOfAuScCHyrCk4X5HUuZExxqual6VIyOU8zWhfqqPz_ePg5jIwvcUpCqMCSh3h3xYfFAydwMMgPZiBDig7UMZTVFr6WPcSdEDlNmTZS-1U-uOabI-H6_6UxZtnUM63ow1o4tQK1lR5wetyJ_6rvvh1QBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086142759</pqid></control><display><type>article</type><title>Improved physics-informed neural network in mitigating gradient related failures</title><source>Free E- Journals</source><creator>Niu, Pancheng ; Chen, Yongming ; Guo, Jun ; Zhou, Yuqian ; Feng, Minfu ; Shi, Yanchao</creator><creatorcontrib>Niu, Pancheng ; Chen, Yongming ; Guo, Jun ; Zhou, Yuqian ; Feng, Minfu ; Shi, Yanchao</creatorcontrib><description>Physics-informed neural networks (PINNs) integrate fundamental physical principles with advanced data-driven techniques, driving significant advancements in scientific computing. However, PINNs face persistent challenges with stiffness in gradient flow, which limits their predictive capabilities. This paper presents an improved PINN (I-PINN) to mitigate gradient-related failures. The core of I-PINN is to combine the respective strengths of neural networks with an improved architecture and adaptive weights containingupper bounds. The capability to enhance accuracy by at least one order of magnitude and accelerate convergence, without introducing extra computational complexity relative to the baseline model, is achieved by I-PINN. Numerical experiments with a variety of benchmarks illustrate the improved accuracy and generalization of I-PINN. The supporting data and code are accessible at https://github.com/PanChengN/I-PINN.git, enabling broader research engagement.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Gradient flow ; Neural networks</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Niu, Pancheng</creatorcontrib><creatorcontrib>Chen, Yongming</creatorcontrib><creatorcontrib>Guo, Jun</creatorcontrib><creatorcontrib>Zhou, Yuqian</creatorcontrib><creatorcontrib>Feng, Minfu</creatorcontrib><creatorcontrib>Shi, Yanchao</creatorcontrib><title>Improved physics-informed neural network in mitigating gradient related failures</title><title>arXiv.org</title><description>Physics-informed neural networks (PINNs) integrate fundamental physical principles with advanced data-driven techniques, driving significant advancements in scientific computing. However, PINNs face persistent challenges with stiffness in gradient flow, which limits their predictive capabilities. This paper presents an improved PINN (I-PINN) to mitigate gradient-related failures. The core of I-PINN is to combine the respective strengths of neural networks with an improved architecture and adaptive weights containingupper bounds. The capability to enhance accuracy by at least one order of magnitude and accelerate convergence, without introducing extra computational complexity relative to the baseline model, is achieved by I-PINN. Numerical experiments with a variety of benchmarks illustrate the improved accuracy and generalization of I-PINN. The supporting data and code are accessible at https://github.com/PanChengN/I-PINN.git, enabling broader research engagement.</description><subject>Accuracy</subject><subject>Gradient flow</subject><subject>Neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjb0KwjAURoMgWLTvEHAupEn_nEXRzcG9BJvWW9Ok3iSKb28GH8DpwPkOfAuScCHyrCk4X5HUuZExxqual6VIyOU8zWhfqqPz_ePg5jIwvcUpCqMCSh3h3xYfFAydwMMgPZiBDig7UMZTVFr6WPcSdEDlNmTZS-1U-uOabI-H6_6UxZtnUM63ow1o4tQK1lR5wetyJ_6rvvh1QBg</recordid><startdate>20240728</startdate><enddate>20240728</enddate><creator>Niu, Pancheng</creator><creator>Chen, Yongming</creator><creator>Guo, Jun</creator><creator>Zhou, Yuqian</creator><creator>Feng, Minfu</creator><creator>Shi, Yanchao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240728</creationdate><title>Improved physics-informed neural network in mitigating gradient related failures</title><author>Niu, Pancheng ; Chen, Yongming ; Guo, Jun ; Zhou, Yuqian ; Feng, Minfu ; Shi, Yanchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30861427593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Gradient flow</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Niu, Pancheng</creatorcontrib><creatorcontrib>Chen, Yongming</creatorcontrib><creatorcontrib>Guo, Jun</creatorcontrib><creatorcontrib>Zhou, Yuqian</creatorcontrib><creatorcontrib>Feng, Minfu</creatorcontrib><creatorcontrib>Shi, Yanchao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Pancheng</au><au>Chen, Yongming</au><au>Guo, Jun</au><au>Zhou, Yuqian</au><au>Feng, Minfu</au><au>Shi, Yanchao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improved physics-informed neural network in mitigating gradient related failures</atitle><jtitle>arXiv.org</jtitle><date>2024-07-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Physics-informed neural networks (PINNs) integrate fundamental physical principles with advanced data-driven techniques, driving significant advancements in scientific computing. However, PINNs face persistent challenges with stiffness in gradient flow, which limits their predictive capabilities. This paper presents an improved PINN (I-PINN) to mitigate gradient-related failures. The core of I-PINN is to combine the respective strengths of neural networks with an improved architecture and adaptive weights containingupper bounds. The capability to enhance accuracy by at least one order of magnitude and accelerate convergence, without introducing extra computational complexity relative to the baseline model, is achieved by I-PINN. Numerical experiments with a variety of benchmarks illustrate the improved accuracy and generalization of I-PINN. The supporting data and code are accessible at https://github.com/PanChengN/I-PINN.git, enabling broader research engagement.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3086142759 |
source | Free E- Journals |
subjects | Accuracy Gradient flow Neural networks |
title | Improved physics-informed neural network in mitigating gradient related failures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improved%20physics-informed%20neural%20network%20in%20mitigating%20gradient%20related%20failures&rft.jtitle=arXiv.org&rft.au=Niu,%20Pancheng&rft.date=2024-07-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3086142759%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086142759&rft_id=info:pmid/&rfr_iscdi=true |