On the average size of \(3\)-torsion in class groups of \(C_2 \wr H\)-extensions
The Cohen-Lenstra-Martinet heuristics lead one to conjecture that the average size of the \(p\)-torsion in class groups of \(G\)-extensions of a number field is finite. In a 2021 paper, Lemke Oliver, Wang, and Wood proved this conjecture in the case of \(p = 3\) for permutation groups \(G\) of the f...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Iskander, Jonas Iyer, Hari R |
description | The Cohen-Lenstra-Martinet heuristics lead one to conjecture that the average size of the \(p\)-torsion in class groups of \(G\)-extensions of a number field is finite. In a 2021 paper, Lemke Oliver, Wang, and Wood proved this conjecture in the case of \(p = 3\) for permutation groups \(G\) of the form \(C_2 \wr H\) for a broad family of permutation groups \(H\), including most nilpotent groups. However, their theorem does not apply for some nilpotent groups of interest, such as \(H = C_5\). We extend their results to prove that the average size of \(3\)-torsion in class groups of \(C_2 \wr H\)-extensions is finite for any nilpotent group \(H\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3086129175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086129175</sourcerecordid><originalsourceid>FETCH-proquest_journals_30861291753</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCJLyHS60qYUwzuRPaync1aKlIINcTZEZmztW9PQZ9QCtzuJ8M-YJKcMg3QmxYD5RxzkXcSKiSHrsfNLgrgjqjlY1CNS-EEwNxUYW28AZS63R0GqoekUEjTXjQF-QlQKKh4V8gvh0qD-UVmxeq57Q_3XJ1sfDJcuDwZrbiOTKzoxWT6uUPI1DsQ-TSP6n3j-SPNI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086129175</pqid></control><display><type>article</type><title>On the average size of \(3\)-torsion in class groups of \(C_2 \wr H\)-extensions</title><source>Free E- Journals</source><creator>Iskander, Jonas ; Iyer, Hari R</creator><creatorcontrib>Iskander, Jonas ; Iyer, Hari R</creatorcontrib><description>The Cohen-Lenstra-Martinet heuristics lead one to conjecture that the average size of the \(p\)-torsion in class groups of \(G\)-extensions of a number field is finite. In a 2021 paper, Lemke Oliver, Wang, and Wood proved this conjecture in the case of \(p = 3\) for permutation groups \(G\) of the form \(C_2 \wr H\) for a broad family of permutation groups \(H\), including most nilpotent groups. However, their theorem does not apply for some nilpotent groups of interest, such as \(H = C_5\). We extend their results to prove that the average size of \(3\)-torsion in class groups of \(C_2 \wr H\)-extensions is finite for any nilpotent group \(H\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Number theory ; Permutations</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Iskander, Jonas</creatorcontrib><creatorcontrib>Iyer, Hari R</creatorcontrib><title>On the average size of \(3\)-torsion in class groups of \(C_2 \wr H\)-extensions</title><title>arXiv.org</title><description>The Cohen-Lenstra-Martinet heuristics lead one to conjecture that the average size of the \(p\)-torsion in class groups of \(G\)-extensions of a number field is finite. In a 2021 paper, Lemke Oliver, Wang, and Wood proved this conjecture in the case of \(p = 3\) for permutation groups \(G\) of the form \(C_2 \wr H\) for a broad family of permutation groups \(H\), including most nilpotent groups. However, their theorem does not apply for some nilpotent groups of interest, such as \(H = C_5\). We extend their results to prove that the average size of \(3\)-torsion in class groups of \(C_2 \wr H\)-extensions is finite for any nilpotent group \(H\).</description><subject>Number theory</subject><subject>Permutations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNys0KgkAUQOEhCJLyHS60qYUwzuRPaync1aKlIINcTZEZmztW9PQZ9QCtzuJ8M-YJKcMg3QmxYD5RxzkXcSKiSHrsfNLgrgjqjlY1CNS-EEwNxUYW28AZS63R0GqoekUEjTXjQF-QlQKKh4V8gvh0qD-UVmxeq57Q_3XJ1sfDJcuDwZrbiOTKzoxWT6uUPI1DsQ-TSP6n3j-SPNI</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Iskander, Jonas</creator><creator>Iyer, Hari R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240807</creationdate><title>On the average size of \(3\)-torsion in class groups of \(C_2 \wr H\)-extensions</title><author>Iskander, Jonas ; Iyer, Hari R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30861291753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Number theory</topic><topic>Permutations</topic><toplevel>online_resources</toplevel><creatorcontrib>Iskander, Jonas</creatorcontrib><creatorcontrib>Iyer, Hari R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iskander, Jonas</au><au>Iyer, Hari R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the average size of \(3\)-torsion in class groups of \(C_2 \wr H\)-extensions</atitle><jtitle>arXiv.org</jtitle><date>2024-08-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The Cohen-Lenstra-Martinet heuristics lead one to conjecture that the average size of the \(p\)-torsion in class groups of \(G\)-extensions of a number field is finite. In a 2021 paper, Lemke Oliver, Wang, and Wood proved this conjecture in the case of \(p = 3\) for permutation groups \(G\) of the form \(C_2 \wr H\) for a broad family of permutation groups \(H\), including most nilpotent groups. However, their theorem does not apply for some nilpotent groups of interest, such as \(H = C_5\). We extend their results to prove that the average size of \(3\)-torsion in class groups of \(C_2 \wr H\)-extensions is finite for any nilpotent group \(H\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3086129175 |
source | Free E- Journals |
subjects | Number theory Permutations |
title | On the average size of \(3\)-torsion in class groups of \(C_2 \wr H\)-extensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20average%20size%20of%20%5C(3%5C)-torsion%20in%20class%20groups%20of%20%5C(C_2%20%5Cwr%20H%5C)-extensions&rft.jtitle=arXiv.org&rft.au=Iskander,%20Jonas&rft.date=2024-08-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3086129175%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086129175&rft_id=info:pmid/&rfr_iscdi=true |