Lazy incremental search for efficient replanning with bounded suboptimality guarantees
We present a lazy incremental search algorithm, Lifelong-GLS (L-GLS), along with its bounded suboptimal version, Bounded L-GLS (B-LGLS) that combine the search efficiency of incremental search algorithms with the evaluation efficiency of lazy search algorithms for fast replanning in problem domains...
Gespeichert in:
Veröffentlicht in: | The International journal of robotics research 2024-07, Vol.43 (8), p.1175-1207 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1207 |
---|---|
container_issue | 8 |
container_start_page | 1175 |
container_title | The International journal of robotics research |
container_volume | 43 |
creator | Lim, Jaein Ghanei, Mahdi Lawson, R. Connor Srinivasa, Siddhartha Tsiotras, Panagiotis |
description | We present a lazy incremental search algorithm, Lifelong-GLS (L-GLS), along with its bounded suboptimal version, Bounded L-GLS (B-LGLS) that combine the search efficiency of incremental search algorithms with the evaluation efficiency of lazy search algorithms for fast replanning in problem domains where edge evaluations are more expensive than vertex expansions. The proposed algorithms generalize Lifelong Planning A* (LPA*) and its bounded suboptimal version, Truncated LPA* (TLPA*), within the Generalized Lazy Search (GLS) framework, so as to restrict expensive edge evaluations only to the current shortest subpath when the cost-to-come inconsistencies are propagated during repair. We also present dynamic versions of the L-GLS and B-LGLS algorithms, called Generalized D* (GD*) and Bounded Generalized D* (B-GD*), respectively, for efficient replanning with non-stationary queries, designed specifically for navigation of mobile robots. We prove that the proposed algorithms are complete and correct in finding a solution that is guaranteed not to exceed the optimal solution cost by a user-chosen factor. Our numerical and experimental results support the claim that the proposed integration of the incremental and lazy search frameworks can help find solutions faster compared to the regular incremental or regular lazy search algorithms when the underlying graph representation changes often. |
doi_str_mv | 10.1177/02783649241227869 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086091335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_02783649241227869</sage_id><sourcerecordid>3086091335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-eca3a4378a5931438a878ba6507791df016d6719ee15bc8385ac0a2eb8a2ab833</originalsourceid><addsrcrecordid>eNp1UEtPwzAMjhBIjMEP4BaJc0fctEl6RBMvaRIX4Fq5qbt16tKSpELj19NpSBwQJ1v297A_xq5BLAC0vhWpNlJlRZpBOrWqOGEz0BkkErQ6ZbPDPjkAztlFCFshhFSimLH3FX7teeuspx25iB0PhN5ueNN7Tk3T2nYac09Dh861bs0_27jhVT-6mmoexqofYrvDro17vh7Ro4tE4ZKdNdgFuvqpc_b2cP-6fEpWL4_Py7tVYlOVxYQsSsykNpgXEjJp0GhTocqF1gXUjQBVKw0FEeSVNdLkaAWmVBlMsTJSztnNUXfw_cdIIZbbfvRusiylMNOHIGU-oeCIsr4PwVNTDn662e9LEOUhvvJPfBNnceQEXNOv6v-Eb_AUcFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086091335</pqid></control><display><type>article</type><title>Lazy incremental search for efficient replanning with bounded suboptimality guarantees</title><source>SAGE Complete A-Z List</source><creator>Lim, Jaein ; Ghanei, Mahdi ; Lawson, R. Connor ; Srinivasa, Siddhartha ; Tsiotras, Panagiotis</creator><creatorcontrib>Lim, Jaein ; Ghanei, Mahdi ; Lawson, R. Connor ; Srinivasa, Siddhartha ; Tsiotras, Panagiotis</creatorcontrib><description>We present a lazy incremental search algorithm, Lifelong-GLS (L-GLS), along with its bounded suboptimal version, Bounded L-GLS (B-LGLS) that combine the search efficiency of incremental search algorithms with the evaluation efficiency of lazy search algorithms for fast replanning in problem domains where edge evaluations are more expensive than vertex expansions. The proposed algorithms generalize Lifelong Planning A* (LPA*) and its bounded suboptimal version, Truncated LPA* (TLPA*), within the Generalized Lazy Search (GLS) framework, so as to restrict expensive edge evaluations only to the current shortest subpath when the cost-to-come inconsistencies are propagated during repair. We also present dynamic versions of the L-GLS and B-LGLS algorithms, called Generalized D* (GD*) and Bounded Generalized D* (B-GD*), respectively, for efficient replanning with non-stationary queries, designed specifically for navigation of mobile robots. We prove that the proposed algorithms are complete and correct in finding a solution that is guaranteed not to exceed the optimal solution cost by a user-chosen factor. Our numerical and experimental results support the claim that the proposed integration of the incremental and lazy search frameworks can help find solutions faster compared to the regular incremental or regular lazy search algorithms when the underlying graph representation changes often.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/02783649241227869</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Graph representations ; Graphical representations ; Search algorithms</subject><ispartof>The International journal of robotics research, 2024-07, Vol.43 (8), p.1175-1207</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-eca3a4378a5931438a878ba6507791df016d6719ee15bc8385ac0a2eb8a2ab833</cites><orcidid>0000-0003-3057-7997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/02783649241227869$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/02783649241227869$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Lim, Jaein</creatorcontrib><creatorcontrib>Ghanei, Mahdi</creatorcontrib><creatorcontrib>Lawson, R. Connor</creatorcontrib><creatorcontrib>Srinivasa, Siddhartha</creatorcontrib><creatorcontrib>Tsiotras, Panagiotis</creatorcontrib><title>Lazy incremental search for efficient replanning with bounded suboptimality guarantees</title><title>The International journal of robotics research</title><description>We present a lazy incremental search algorithm, Lifelong-GLS (L-GLS), along with its bounded suboptimal version, Bounded L-GLS (B-LGLS) that combine the search efficiency of incremental search algorithms with the evaluation efficiency of lazy search algorithms for fast replanning in problem domains where edge evaluations are more expensive than vertex expansions. The proposed algorithms generalize Lifelong Planning A* (LPA*) and its bounded suboptimal version, Truncated LPA* (TLPA*), within the Generalized Lazy Search (GLS) framework, so as to restrict expensive edge evaluations only to the current shortest subpath when the cost-to-come inconsistencies are propagated during repair. We also present dynamic versions of the L-GLS and B-LGLS algorithms, called Generalized D* (GD*) and Bounded Generalized D* (B-GD*), respectively, for efficient replanning with non-stationary queries, designed specifically for navigation of mobile robots. We prove that the proposed algorithms are complete and correct in finding a solution that is guaranteed not to exceed the optimal solution cost by a user-chosen factor. Our numerical and experimental results support the claim that the proposed integration of the incremental and lazy search frameworks can help find solutions faster compared to the regular incremental or regular lazy search algorithms when the underlying graph representation changes often.</description><subject>Algorithms</subject><subject>Graph representations</subject><subject>Graphical representations</subject><subject>Search algorithms</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UEtPwzAMjhBIjMEP4BaJc0fctEl6RBMvaRIX4Fq5qbt16tKSpELj19NpSBwQJ1v297A_xq5BLAC0vhWpNlJlRZpBOrWqOGEz0BkkErQ6ZbPDPjkAztlFCFshhFSimLH3FX7teeuspx25iB0PhN5ueNN7Tk3T2nYac09Dh861bs0_27jhVT-6mmoexqofYrvDro17vh7Ro4tE4ZKdNdgFuvqpc_b2cP-6fEpWL4_Py7tVYlOVxYQsSsykNpgXEjJp0GhTocqF1gXUjQBVKw0FEeSVNdLkaAWmVBlMsTJSztnNUXfw_cdIIZbbfvRusiylMNOHIGU-oeCIsr4PwVNTDn662e9LEOUhvvJPfBNnceQEXNOv6v-Eb_AUcFU</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Lim, Jaein</creator><creator>Ghanei, Mahdi</creator><creator>Lawson, R. Connor</creator><creator>Srinivasa, Siddhartha</creator><creator>Tsiotras, Panagiotis</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3057-7997</orcidid></search><sort><creationdate>20240701</creationdate><title>Lazy incremental search for efficient replanning with bounded suboptimality guarantees</title><author>Lim, Jaein ; Ghanei, Mahdi ; Lawson, R. Connor ; Srinivasa, Siddhartha ; Tsiotras, Panagiotis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-eca3a4378a5931438a878ba6507791df016d6719ee15bc8385ac0a2eb8a2ab833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Graph representations</topic><topic>Graphical representations</topic><topic>Search algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Jaein</creatorcontrib><creatorcontrib>Ghanei, Mahdi</creatorcontrib><creatorcontrib>Lawson, R. Connor</creatorcontrib><creatorcontrib>Srinivasa, Siddhartha</creatorcontrib><creatorcontrib>Tsiotras, Panagiotis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Jaein</au><au>Ghanei, Mahdi</au><au>Lawson, R. Connor</au><au>Srinivasa, Siddhartha</au><au>Tsiotras, Panagiotis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lazy incremental search for efficient replanning with bounded suboptimality guarantees</atitle><jtitle>The International journal of robotics research</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>43</volume><issue>8</issue><spage>1175</spage><epage>1207</epage><pages>1175-1207</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>We present a lazy incremental search algorithm, Lifelong-GLS (L-GLS), along with its bounded suboptimal version, Bounded L-GLS (B-LGLS) that combine the search efficiency of incremental search algorithms with the evaluation efficiency of lazy search algorithms for fast replanning in problem domains where edge evaluations are more expensive than vertex expansions. The proposed algorithms generalize Lifelong Planning A* (LPA*) and its bounded suboptimal version, Truncated LPA* (TLPA*), within the Generalized Lazy Search (GLS) framework, so as to restrict expensive edge evaluations only to the current shortest subpath when the cost-to-come inconsistencies are propagated during repair. We also present dynamic versions of the L-GLS and B-LGLS algorithms, called Generalized D* (GD*) and Bounded Generalized D* (B-GD*), respectively, for efficient replanning with non-stationary queries, designed specifically for navigation of mobile robots. We prove that the proposed algorithms are complete and correct in finding a solution that is guaranteed not to exceed the optimal solution cost by a user-chosen factor. Our numerical and experimental results support the claim that the proposed integration of the incremental and lazy search frameworks can help find solutions faster compared to the regular incremental or regular lazy search algorithms when the underlying graph representation changes often.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/02783649241227869</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0003-3057-7997</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-3649 |
ispartof | The International journal of robotics research, 2024-07, Vol.43 (8), p.1175-1207 |
issn | 0278-3649 1741-3176 |
language | eng |
recordid | cdi_proquest_journals_3086091335 |
source | SAGE Complete A-Z List |
subjects | Algorithms Graph representations Graphical representations Search algorithms |
title | Lazy incremental search for efficient replanning with bounded suboptimality guarantees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lazy%20incremental%20search%20for%20efficient%20replanning%20with%20bounded%20suboptimality%20guarantees&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Lim,%20Jaein&rft.date=2024-07-01&rft.volume=43&rft.issue=8&rft.spage=1175&rft.epage=1207&rft.pages=1175-1207&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/02783649241227869&rft_dat=%3Cproquest_cross%3E3086091335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086091335&rft_id=info:pmid/&rft_sage_id=10.1177_02783649241227869&rfr_iscdi=true |