Lazy incremental search for efficient replanning with bounded suboptimality guarantees

We present a lazy incremental search algorithm, Lifelong-GLS (L-GLS), along with its bounded suboptimal version, Bounded L-GLS (B-LGLS) that combine the search efficiency of incremental search algorithms with the evaluation efficiency of lazy search algorithms for fast replanning in problem domains...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2024-07, Vol.43 (8), p.1175-1207
Hauptverfasser: Lim, Jaein, Ghanei, Mahdi, Lawson, R. Connor, Srinivasa, Siddhartha, Tsiotras, Panagiotis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1207
container_issue 8
container_start_page 1175
container_title The International journal of robotics research
container_volume 43
creator Lim, Jaein
Ghanei, Mahdi
Lawson, R. Connor
Srinivasa, Siddhartha
Tsiotras, Panagiotis
description We present a lazy incremental search algorithm, Lifelong-GLS (L-GLS), along with its bounded suboptimal version, Bounded L-GLS (B-LGLS) that combine the search efficiency of incremental search algorithms with the evaluation efficiency of lazy search algorithms for fast replanning in problem domains where edge evaluations are more expensive than vertex expansions. The proposed algorithms generalize Lifelong Planning A* (LPA*) and its bounded suboptimal version, Truncated LPA* (TLPA*), within the Generalized Lazy Search (GLS) framework, so as to restrict expensive edge evaluations only to the current shortest subpath when the cost-to-come inconsistencies are propagated during repair. We also present dynamic versions of the L-GLS and B-LGLS algorithms, called Generalized D* (GD*) and Bounded Generalized D* (B-GD*), respectively, for efficient replanning with non-stationary queries, designed specifically for navigation of mobile robots. We prove that the proposed algorithms are complete and correct in finding a solution that is guaranteed not to exceed the optimal solution cost by a user-chosen factor. Our numerical and experimental results support the claim that the proposed integration of the incremental and lazy search frameworks can help find solutions faster compared to the regular incremental or regular lazy search algorithms when the underlying graph representation changes often.
doi_str_mv 10.1177/02783649241227869
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086091335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_02783649241227869</sage_id><sourcerecordid>3086091335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-eca3a4378a5931438a878ba6507791df016d6719ee15bc8385ac0a2eb8a2ab833</originalsourceid><addsrcrecordid>eNp1UEtPwzAMjhBIjMEP4BaJc0fctEl6RBMvaRIX4Fq5qbt16tKSpELj19NpSBwQJ1v297A_xq5BLAC0vhWpNlJlRZpBOrWqOGEz0BkkErQ6ZbPDPjkAztlFCFshhFSimLH3FX7teeuspx25iB0PhN5ueNN7Tk3T2nYac09Dh861bs0_27jhVT-6mmoexqofYrvDro17vh7Ro4tE4ZKdNdgFuvqpc_b2cP-6fEpWL4_Py7tVYlOVxYQsSsykNpgXEjJp0GhTocqF1gXUjQBVKw0FEeSVNdLkaAWmVBlMsTJSztnNUXfw_cdIIZbbfvRusiylMNOHIGU-oeCIsr4PwVNTDn662e9LEOUhvvJPfBNnceQEXNOv6v-Eb_AUcFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086091335</pqid></control><display><type>article</type><title>Lazy incremental search for efficient replanning with bounded suboptimality guarantees</title><source>SAGE Complete A-Z List</source><creator>Lim, Jaein ; Ghanei, Mahdi ; Lawson, R. Connor ; Srinivasa, Siddhartha ; Tsiotras, Panagiotis</creator><creatorcontrib>Lim, Jaein ; Ghanei, Mahdi ; Lawson, R. Connor ; Srinivasa, Siddhartha ; Tsiotras, Panagiotis</creatorcontrib><description>We present a lazy incremental search algorithm, Lifelong-GLS (L-GLS), along with its bounded suboptimal version, Bounded L-GLS (B-LGLS) that combine the search efficiency of incremental search algorithms with the evaluation efficiency of lazy search algorithms for fast replanning in problem domains where edge evaluations are more expensive than vertex expansions. The proposed algorithms generalize Lifelong Planning A* (LPA*) and its bounded suboptimal version, Truncated LPA* (TLPA*), within the Generalized Lazy Search (GLS) framework, so as to restrict expensive edge evaluations only to the current shortest subpath when the cost-to-come inconsistencies are propagated during repair. We also present dynamic versions of the L-GLS and B-LGLS algorithms, called Generalized D* (GD*) and Bounded Generalized D* (B-GD*), respectively, for efficient replanning with non-stationary queries, designed specifically for navigation of mobile robots. We prove that the proposed algorithms are complete and correct in finding a solution that is guaranteed not to exceed the optimal solution cost by a user-chosen factor. Our numerical and experimental results support the claim that the proposed integration of the incremental and lazy search frameworks can help find solutions faster compared to the regular incremental or regular lazy search algorithms when the underlying graph representation changes often.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/02783649241227869</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Graph representations ; Graphical representations ; Search algorithms</subject><ispartof>The International journal of robotics research, 2024-07, Vol.43 (8), p.1175-1207</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-eca3a4378a5931438a878ba6507791df016d6719ee15bc8385ac0a2eb8a2ab833</cites><orcidid>0000-0003-3057-7997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/02783649241227869$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/02783649241227869$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Lim, Jaein</creatorcontrib><creatorcontrib>Ghanei, Mahdi</creatorcontrib><creatorcontrib>Lawson, R. Connor</creatorcontrib><creatorcontrib>Srinivasa, Siddhartha</creatorcontrib><creatorcontrib>Tsiotras, Panagiotis</creatorcontrib><title>Lazy incremental search for efficient replanning with bounded suboptimality guarantees</title><title>The International journal of robotics research</title><description>We present a lazy incremental search algorithm, Lifelong-GLS (L-GLS), along with its bounded suboptimal version, Bounded L-GLS (B-LGLS) that combine the search efficiency of incremental search algorithms with the evaluation efficiency of lazy search algorithms for fast replanning in problem domains where edge evaluations are more expensive than vertex expansions. The proposed algorithms generalize Lifelong Planning A* (LPA*) and its bounded suboptimal version, Truncated LPA* (TLPA*), within the Generalized Lazy Search (GLS) framework, so as to restrict expensive edge evaluations only to the current shortest subpath when the cost-to-come inconsistencies are propagated during repair. We also present dynamic versions of the L-GLS and B-LGLS algorithms, called Generalized D* (GD*) and Bounded Generalized D* (B-GD*), respectively, for efficient replanning with non-stationary queries, designed specifically for navigation of mobile robots. We prove that the proposed algorithms are complete and correct in finding a solution that is guaranteed not to exceed the optimal solution cost by a user-chosen factor. Our numerical and experimental results support the claim that the proposed integration of the incremental and lazy search frameworks can help find solutions faster compared to the regular incremental or regular lazy search algorithms when the underlying graph representation changes often.</description><subject>Algorithms</subject><subject>Graph representations</subject><subject>Graphical representations</subject><subject>Search algorithms</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UEtPwzAMjhBIjMEP4BaJc0fctEl6RBMvaRIX4Fq5qbt16tKSpELj19NpSBwQJ1v297A_xq5BLAC0vhWpNlJlRZpBOrWqOGEz0BkkErQ6ZbPDPjkAztlFCFshhFSimLH3FX7teeuspx25iB0PhN5ueNN7Tk3T2nYac09Dh861bs0_27jhVT-6mmoexqofYrvDro17vh7Ro4tE4ZKdNdgFuvqpc_b2cP-6fEpWL4_Py7tVYlOVxYQsSsykNpgXEjJp0GhTocqF1gXUjQBVKw0FEeSVNdLkaAWmVBlMsTJSztnNUXfw_cdIIZbbfvRusiylMNOHIGU-oeCIsr4PwVNTDn662e9LEOUhvvJPfBNnceQEXNOv6v-Eb_AUcFU</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Lim, Jaein</creator><creator>Ghanei, Mahdi</creator><creator>Lawson, R. Connor</creator><creator>Srinivasa, Siddhartha</creator><creator>Tsiotras, Panagiotis</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3057-7997</orcidid></search><sort><creationdate>20240701</creationdate><title>Lazy incremental search for efficient replanning with bounded suboptimality guarantees</title><author>Lim, Jaein ; Ghanei, Mahdi ; Lawson, R. Connor ; Srinivasa, Siddhartha ; Tsiotras, Panagiotis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-eca3a4378a5931438a878ba6507791df016d6719ee15bc8385ac0a2eb8a2ab833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Graph representations</topic><topic>Graphical representations</topic><topic>Search algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Jaein</creatorcontrib><creatorcontrib>Ghanei, Mahdi</creatorcontrib><creatorcontrib>Lawson, R. Connor</creatorcontrib><creatorcontrib>Srinivasa, Siddhartha</creatorcontrib><creatorcontrib>Tsiotras, Panagiotis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Jaein</au><au>Ghanei, Mahdi</au><au>Lawson, R. Connor</au><au>Srinivasa, Siddhartha</au><au>Tsiotras, Panagiotis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lazy incremental search for efficient replanning with bounded suboptimality guarantees</atitle><jtitle>The International journal of robotics research</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>43</volume><issue>8</issue><spage>1175</spage><epage>1207</epage><pages>1175-1207</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>We present a lazy incremental search algorithm, Lifelong-GLS (L-GLS), along with its bounded suboptimal version, Bounded L-GLS (B-LGLS) that combine the search efficiency of incremental search algorithms with the evaluation efficiency of lazy search algorithms for fast replanning in problem domains where edge evaluations are more expensive than vertex expansions. The proposed algorithms generalize Lifelong Planning A* (LPA*) and its bounded suboptimal version, Truncated LPA* (TLPA*), within the Generalized Lazy Search (GLS) framework, so as to restrict expensive edge evaluations only to the current shortest subpath when the cost-to-come inconsistencies are propagated during repair. We also present dynamic versions of the L-GLS and B-LGLS algorithms, called Generalized D* (GD*) and Bounded Generalized D* (B-GD*), respectively, for efficient replanning with non-stationary queries, designed specifically for navigation of mobile robots. We prove that the proposed algorithms are complete and correct in finding a solution that is guaranteed not to exceed the optimal solution cost by a user-chosen factor. Our numerical and experimental results support the claim that the proposed integration of the incremental and lazy search frameworks can help find solutions faster compared to the regular incremental or regular lazy search algorithms when the underlying graph representation changes often.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/02783649241227869</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0003-3057-7997</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-3649
ispartof The International journal of robotics research, 2024-07, Vol.43 (8), p.1175-1207
issn 0278-3649
1741-3176
language eng
recordid cdi_proquest_journals_3086091335
source SAGE Complete A-Z List
subjects Algorithms
Graph representations
Graphical representations
Search algorithms
title Lazy incremental search for efficient replanning with bounded suboptimality guarantees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lazy%20incremental%20search%20for%20efficient%20replanning%20with%20bounded%20suboptimality%20guarantees&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Lim,%20Jaein&rft.date=2024-07-01&rft.volume=43&rft.issue=8&rft.spage=1175&rft.epage=1207&rft.pages=1175-1207&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/02783649241227869&rft_dat=%3Cproquest_cross%3E3086091335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086091335&rft_id=info:pmid/&rft_sage_id=10.1177_02783649241227869&rfr_iscdi=true