Discrete asymptotic nets with constant affine mean curvature

In this paper we define the class of constant affine mean curvature (CAMC) discrete asymptotic nets, which contains the well-known classes of affine spheres and affine minimal asymptotic nets. This class is defined by considering fields of compatible interpolating quadrics, i.e., quadrics that have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Beiträge zur Algebra und Geometrie 2024-09, Vol.65 (3), p.601-621
Hauptverfasser: de Vargas, Anderson Reis, Craizer, Marcos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 621
container_issue 3
container_start_page 601
container_title Beiträge zur Algebra und Geometrie
container_volume 65
creator de Vargas, Anderson Reis
Craizer, Marcos
description In this paper we define the class of constant affine mean curvature (CAMC) discrete asymptotic nets, which contains the well-known classes of affine spheres and affine minimal asymptotic nets. This class is defined by considering fields of compatible interpolating quadrics, i.e., quadrics that have common tangent planes at the edges of the net. We show that, for CAMC asymptotic nets, ruled discrete asymptotic nets is equivalent to ruled compatible interpolating quadrics. Moreover, we prove discrete counterparts of some known properties of the Demoulin transform of a smooth CAMC surface.
doi_str_mv 10.1007/s13366-023-00707-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086029494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086029494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cbf6a482aaca9ec44702b85020885ba9fcde1318a0247166ada4fb5605e028f13</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKuC6-hN0iYpuJHxCQNudB1uM4l2cNIxSR3m3xut4M7V5cL5zoGPkDMGFwxAXSYmhJQUuKDlBUW3e2TGWcsoCC32yQyY0LTWnB2So5RWACCVUjNyddMnG112FabdepOH3NsquJyqbZ_fKjuElDHkCr3vg6vWDkNlx_iJeYzuhBx4fE_u9Pcek5e72-f5A1083T_OrxfUCtZmajsvsWwjWmydrWsFvNMNcNC66bD1dumYYBqB14pJiUusfddIaBxw7Zk4JudT7yYOH6NL2ayGMYYyaQRoCbyt27qk-JSycUgpOm82sV9j3BkG5tuSmSyZYsn8WDLbAokJSiUcXl38q_6H-gLrvGrf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086029494</pqid></control><display><type>article</type><title>Discrete asymptotic nets with constant affine mean curvature</title><source>SpringerLink Journals - AutoHoldings</source><creator>de Vargas, Anderson Reis ; Craizer, Marcos</creator><creatorcontrib>de Vargas, Anderson Reis ; Craizer, Marcos</creatorcontrib><description>In this paper we define the class of constant affine mean curvature (CAMC) discrete asymptotic nets, which contains the well-known classes of affine spheres and affine minimal asymptotic nets. This class is defined by considering fields of compatible interpolating quadrics, i.e., quadrics that have common tangent planes at the edges of the net. We show that, for CAMC asymptotic nets, ruled discrete asymptotic nets is equivalent to ruled compatible interpolating quadrics. Moreover, we prove discrete counterparts of some known properties of the Demoulin transform of a smooth CAMC surface.</description><identifier>ISSN: 0138-4821</identifier><identifier>EISSN: 2191-0383</identifier><identifier>DOI: 10.1007/s13366-023-00707-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Algebraic Geometry ; Asymptotic properties ; Convex and Discrete Geometry ; Curvature ; Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Beiträge zur Algebra und Geometrie, 2024-09, Vol.65 (3), p.601-621</ispartof><rights>The Managing Editors 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cbf6a482aaca9ec44702b85020885ba9fcde1318a0247166ada4fb5605e028f13</citedby><cites>FETCH-LOGICAL-c319t-cbf6a482aaca9ec44702b85020885ba9fcde1318a0247166ada4fb5605e028f13</cites><orcidid>0000-0003-4477-8853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13366-023-00707-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13366-023-00707-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>de Vargas, Anderson Reis</creatorcontrib><creatorcontrib>Craizer, Marcos</creatorcontrib><title>Discrete asymptotic nets with constant affine mean curvature</title><title>Beiträge zur Algebra und Geometrie</title><addtitle>Beitr Algebra Geom</addtitle><description>In this paper we define the class of constant affine mean curvature (CAMC) discrete asymptotic nets, which contains the well-known classes of affine spheres and affine minimal asymptotic nets. This class is defined by considering fields of compatible interpolating quadrics, i.e., quadrics that have common tangent planes at the edges of the net. We show that, for CAMC asymptotic nets, ruled discrete asymptotic nets is equivalent to ruled compatible interpolating quadrics. Moreover, we prove discrete counterparts of some known properties of the Demoulin transform of a smooth CAMC surface.</description><subject>Algebra</subject><subject>Algebraic Geometry</subject><subject>Asymptotic properties</subject><subject>Convex and Discrete Geometry</subject><subject>Curvature</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0138-4821</issn><issn>2191-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gKuC6-hN0iYpuJHxCQNudB1uM4l2cNIxSR3m3xut4M7V5cL5zoGPkDMGFwxAXSYmhJQUuKDlBUW3e2TGWcsoCC32yQyY0LTWnB2So5RWACCVUjNyddMnG112FabdepOH3NsquJyqbZ_fKjuElDHkCr3vg6vWDkNlx_iJeYzuhBx4fE_u9Pcek5e72-f5A1083T_OrxfUCtZmajsvsWwjWmydrWsFvNMNcNC66bD1dumYYBqB14pJiUusfddIaBxw7Zk4JudT7yYOH6NL2ayGMYYyaQRoCbyt27qk-JSycUgpOm82sV9j3BkG5tuSmSyZYsn8WDLbAokJSiUcXl38q_6H-gLrvGrf</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>de Vargas, Anderson Reis</creator><creator>Craizer, Marcos</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4477-8853</orcidid></search><sort><creationdate>20240901</creationdate><title>Discrete asymptotic nets with constant affine mean curvature</title><author>de Vargas, Anderson Reis ; Craizer, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cbf6a482aaca9ec44702b85020885ba9fcde1318a0247166ada4fb5605e028f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Algebraic Geometry</topic><topic>Asymptotic properties</topic><topic>Convex and Discrete Geometry</topic><topic>Curvature</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Vargas, Anderson Reis</creatorcontrib><creatorcontrib>Craizer, Marcos</creatorcontrib><collection>CrossRef</collection><jtitle>Beiträge zur Algebra und Geometrie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Vargas, Anderson Reis</au><au>Craizer, Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete asymptotic nets with constant affine mean curvature</atitle><jtitle>Beiträge zur Algebra und Geometrie</jtitle><stitle>Beitr Algebra Geom</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>65</volume><issue>3</issue><spage>601</spage><epage>621</epage><pages>601-621</pages><issn>0138-4821</issn><eissn>2191-0383</eissn><abstract>In this paper we define the class of constant affine mean curvature (CAMC) discrete asymptotic nets, which contains the well-known classes of affine spheres and affine minimal asymptotic nets. This class is defined by considering fields of compatible interpolating quadrics, i.e., quadrics that have common tangent planes at the edges of the net. We show that, for CAMC asymptotic nets, ruled discrete asymptotic nets is equivalent to ruled compatible interpolating quadrics. Moreover, we prove discrete counterparts of some known properties of the Demoulin transform of a smooth CAMC surface.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13366-023-00707-w</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4477-8853</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0138-4821
ispartof Beiträge zur Algebra und Geometrie, 2024-09, Vol.65 (3), p.601-621
issn 0138-4821
2191-0383
language eng
recordid cdi_proquest_journals_3086029494
source SpringerLink Journals - AutoHoldings
subjects Algebra
Algebraic Geometry
Asymptotic properties
Convex and Discrete Geometry
Curvature
Geometry
Mathematics
Mathematics and Statistics
Original Paper
title Discrete asymptotic nets with constant affine mean curvature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20asymptotic%20nets%20with%20constant%20affine%20mean%20curvature&rft.jtitle=Beitr%C3%A4ge%20zur%20Algebra%20und%20Geometrie&rft.au=de%20Vargas,%20Anderson%20Reis&rft.date=2024-09-01&rft.volume=65&rft.issue=3&rft.spage=601&rft.epage=621&rft.pages=601-621&rft.issn=0138-4821&rft.eissn=2191-0383&rft_id=info:doi/10.1007/s13366-023-00707-w&rft_dat=%3Cproquest_cross%3E3086029494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086029494&rft_id=info:pmid/&rfr_iscdi=true