Discrete asymptotic nets with constant affine mean curvature
In this paper we define the class of constant affine mean curvature (CAMC) discrete asymptotic nets, which contains the well-known classes of affine spheres and affine minimal asymptotic nets. This class is defined by considering fields of compatible interpolating quadrics, i.e., quadrics that have...
Gespeichert in:
Veröffentlicht in: | Beiträge zur Algebra und Geometrie 2024-09, Vol.65 (3), p.601-621 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 621 |
---|---|
container_issue | 3 |
container_start_page | 601 |
container_title | Beiträge zur Algebra und Geometrie |
container_volume | 65 |
creator | de Vargas, Anderson Reis Craizer, Marcos |
description | In this paper we define the class of constant affine mean curvature (CAMC) discrete asymptotic nets, which contains the well-known classes of affine spheres and affine minimal asymptotic nets. This class is defined by considering fields of compatible interpolating quadrics, i.e., quadrics that have common tangent planes at the edges of the net. We show that, for CAMC asymptotic nets, ruled discrete asymptotic nets is equivalent to ruled compatible interpolating quadrics. Moreover, we prove discrete counterparts of some known properties of the Demoulin transform of a smooth CAMC surface. |
doi_str_mv | 10.1007/s13366-023-00707-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086029494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086029494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cbf6a482aaca9ec44702b85020885ba9fcde1318a0247166ada4fb5605e028f13</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKuC6-hN0iYpuJHxCQNudB1uM4l2cNIxSR3m3xut4M7V5cL5zoGPkDMGFwxAXSYmhJQUuKDlBUW3e2TGWcsoCC32yQyY0LTWnB2So5RWACCVUjNyddMnG112FabdepOH3NsquJyqbZ_fKjuElDHkCr3vg6vWDkNlx_iJeYzuhBx4fE_u9Pcek5e72-f5A1083T_OrxfUCtZmajsvsWwjWmydrWsFvNMNcNC66bD1dumYYBqB14pJiUusfddIaBxw7Zk4JudT7yYOH6NL2ayGMYYyaQRoCbyt27qk-JSycUgpOm82sV9j3BkG5tuSmSyZYsn8WDLbAokJSiUcXl38q_6H-gLrvGrf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086029494</pqid></control><display><type>article</type><title>Discrete asymptotic nets with constant affine mean curvature</title><source>SpringerLink Journals - AutoHoldings</source><creator>de Vargas, Anderson Reis ; Craizer, Marcos</creator><creatorcontrib>de Vargas, Anderson Reis ; Craizer, Marcos</creatorcontrib><description>In this paper we define the class of constant affine mean curvature (CAMC) discrete asymptotic nets, which contains the well-known classes of affine spheres and affine minimal asymptotic nets. This class is defined by considering fields of compatible interpolating quadrics, i.e., quadrics that have common tangent planes at the edges of the net. We show that, for CAMC asymptotic nets, ruled discrete asymptotic nets is equivalent to ruled compatible interpolating quadrics. Moreover, we prove discrete counterparts of some known properties of the Demoulin transform of a smooth CAMC surface.</description><identifier>ISSN: 0138-4821</identifier><identifier>EISSN: 2191-0383</identifier><identifier>DOI: 10.1007/s13366-023-00707-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Algebraic Geometry ; Asymptotic properties ; Convex and Discrete Geometry ; Curvature ; Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Beiträge zur Algebra und Geometrie, 2024-09, Vol.65 (3), p.601-621</ispartof><rights>The Managing Editors 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cbf6a482aaca9ec44702b85020885ba9fcde1318a0247166ada4fb5605e028f13</citedby><cites>FETCH-LOGICAL-c319t-cbf6a482aaca9ec44702b85020885ba9fcde1318a0247166ada4fb5605e028f13</cites><orcidid>0000-0003-4477-8853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13366-023-00707-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13366-023-00707-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>de Vargas, Anderson Reis</creatorcontrib><creatorcontrib>Craizer, Marcos</creatorcontrib><title>Discrete asymptotic nets with constant affine mean curvature</title><title>Beiträge zur Algebra und Geometrie</title><addtitle>Beitr Algebra Geom</addtitle><description>In this paper we define the class of constant affine mean curvature (CAMC) discrete asymptotic nets, which contains the well-known classes of affine spheres and affine minimal asymptotic nets. This class is defined by considering fields of compatible interpolating quadrics, i.e., quadrics that have common tangent planes at the edges of the net. We show that, for CAMC asymptotic nets, ruled discrete asymptotic nets is equivalent to ruled compatible interpolating quadrics. Moreover, we prove discrete counterparts of some known properties of the Demoulin transform of a smooth CAMC surface.</description><subject>Algebra</subject><subject>Algebraic Geometry</subject><subject>Asymptotic properties</subject><subject>Convex and Discrete Geometry</subject><subject>Curvature</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0138-4821</issn><issn>2191-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gKuC6-hN0iYpuJHxCQNudB1uM4l2cNIxSR3m3xut4M7V5cL5zoGPkDMGFwxAXSYmhJQUuKDlBUW3e2TGWcsoCC32yQyY0LTWnB2So5RWACCVUjNyddMnG112FabdepOH3NsquJyqbZ_fKjuElDHkCr3vg6vWDkNlx_iJeYzuhBx4fE_u9Pcek5e72-f5A1083T_OrxfUCtZmajsvsWwjWmydrWsFvNMNcNC66bD1dumYYBqB14pJiUusfddIaBxw7Zk4JudT7yYOH6NL2ayGMYYyaQRoCbyt27qk-JSycUgpOm82sV9j3BkG5tuSmSyZYsn8WDLbAokJSiUcXl38q_6H-gLrvGrf</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>de Vargas, Anderson Reis</creator><creator>Craizer, Marcos</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4477-8853</orcidid></search><sort><creationdate>20240901</creationdate><title>Discrete asymptotic nets with constant affine mean curvature</title><author>de Vargas, Anderson Reis ; Craizer, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cbf6a482aaca9ec44702b85020885ba9fcde1318a0247166ada4fb5605e028f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Algebraic Geometry</topic><topic>Asymptotic properties</topic><topic>Convex and Discrete Geometry</topic><topic>Curvature</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Vargas, Anderson Reis</creatorcontrib><creatorcontrib>Craizer, Marcos</creatorcontrib><collection>CrossRef</collection><jtitle>Beiträge zur Algebra und Geometrie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Vargas, Anderson Reis</au><au>Craizer, Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete asymptotic nets with constant affine mean curvature</atitle><jtitle>Beiträge zur Algebra und Geometrie</jtitle><stitle>Beitr Algebra Geom</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>65</volume><issue>3</issue><spage>601</spage><epage>621</epage><pages>601-621</pages><issn>0138-4821</issn><eissn>2191-0383</eissn><abstract>In this paper we define the class of constant affine mean curvature (CAMC) discrete asymptotic nets, which contains the well-known classes of affine spheres and affine minimal asymptotic nets. This class is defined by considering fields of compatible interpolating quadrics, i.e., quadrics that have common tangent planes at the edges of the net. We show that, for CAMC asymptotic nets, ruled discrete asymptotic nets is equivalent to ruled compatible interpolating quadrics. Moreover, we prove discrete counterparts of some known properties of the Demoulin transform of a smooth CAMC surface.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13366-023-00707-w</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4477-8853</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0138-4821 |
ispartof | Beiträge zur Algebra und Geometrie, 2024-09, Vol.65 (3), p.601-621 |
issn | 0138-4821 2191-0383 |
language | eng |
recordid | cdi_proquest_journals_3086029494 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Algebraic Geometry Asymptotic properties Convex and Discrete Geometry Curvature Geometry Mathematics Mathematics and Statistics Original Paper |
title | Discrete asymptotic nets with constant affine mean curvature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20asymptotic%20nets%20with%20constant%20affine%20mean%20curvature&rft.jtitle=Beitr%C3%A4ge%20zur%20Algebra%20und%20Geometrie&rft.au=de%20Vargas,%20Anderson%20Reis&rft.date=2024-09-01&rft.volume=65&rft.issue=3&rft.spage=601&rft.epage=621&rft.pages=601-621&rft.issn=0138-4821&rft.eissn=2191-0383&rft_id=info:doi/10.1007/s13366-023-00707-w&rft_dat=%3Cproquest_cross%3E3086029494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086029494&rft_id=info:pmid/&rfr_iscdi=true |