Clustering-based visualizations for diagnosing diseases on metagenomic data
Metagenomic data has recently become crucial for precision or personalized medicine. However, these data are often complex, challenging to observe and require sophisticated visualization approaches such as clustering algorithms. Additionally, leveraging the robustness of a simple deep learning archi...
Gespeichert in:
Veröffentlicht in: | Signal, image and video processing image and video processing, 2024-09, Vol.18 (8-9), p.5685-5699 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5699 |
---|---|
container_issue | 8-9 |
container_start_page | 5685 |
container_title | Signal, image and video processing |
container_volume | 18 |
creator | Nguyen, Hai Thanh Phan, Trang Huyen Pham, Linh Thuy Thi Pham, Ngoc Huynh |
description | Metagenomic data has recently become crucial for precision or personalized medicine. However, these data are often complex, challenging to observe and require sophisticated visualization approaches such as clustering algorithms. Additionally, leveraging the robustness of a simple deep learning architecture, such as a shallow convolutional neural network, has attracted many scientists. Therefore, this study utilized well-known clustering algorithms such as density-based spatial clustering of applications with noise (DBSCAN), balanced iterative reducing and clustering using hierarchies (BIRCH), and ordering points to identify the clustering structure (OPTICS) to identify patterns in complex data and generate visualizations from species abundance composition of various diseases. The study then integrated a shallow convolutional neural network to perform disease prediction tasks on clustering-based visualizations. Experimental results showed that BIRCH outperformed some studies in diagnosing Type 2 diabetes, while DBSCAN performed well in diagnosing Colorectal cancer and Inflammatory Bowel Disease. |
doi_str_mv | 10.1007/s11760-024-03264-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086029485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086029485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-164f3a8a6499ed22de7cc96bea263c5dfc777a610deec974d37856928b887a753</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFz9HJR5PsUYofxYIXPYc0yZaUdlMzu4L-ereu6M25zBye9x14CLlkcM0A9A0yphVQ4JKC4EpSeUImzChBmWbs9PcGcU5miFsYRnBtlJmQp8Wuxy6W1G7o2mEM1XvC3u3Sp-tSbrFqcqlCcps248AMJ8YBwyq31T52bhPbvE--Cq5zF-SscTuMs589Ja_3dy-LR7p6flgublfUc4COMiUb4YxTsq5j4DxE7X2t1tFxJfw8NF5r7RSDEKOvtQxCm7mquVkbo52eiym5GnsPJb_1ETu7zX1ph5dWgFHAa2mOFB8pXzJiiY09lLR35cMysEdvdvRmB2_225uVQ0iMITwclcTyV_1P6gtgrnCG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086029485</pqid></control><display><type>article</type><title>Clustering-based visualizations for diagnosing diseases on metagenomic data</title><source>SpringerNature Journals</source><creator>Nguyen, Hai Thanh ; Phan, Trang Huyen ; Pham, Linh Thuy Thi ; Pham, Ngoc Huynh</creator><creatorcontrib>Nguyen, Hai Thanh ; Phan, Trang Huyen ; Pham, Linh Thuy Thi ; Pham, Ngoc Huynh</creatorcontrib><description>Metagenomic data has recently become crucial for precision or personalized medicine. However, these data are often complex, challenging to observe and require sophisticated visualization approaches such as clustering algorithms. Additionally, leveraging the robustness of a simple deep learning architecture, such as a shallow convolutional neural network, has attracted many scientists. Therefore, this study utilized well-known clustering algorithms such as density-based spatial clustering of applications with noise (DBSCAN), balanced iterative reducing and clustering using hierarchies (BIRCH), and ordering points to identify the clustering structure (OPTICS) to identify patterns in complex data and generate visualizations from species abundance composition of various diseases. The study then integrated a shallow convolutional neural network to perform disease prediction tasks on clustering-based visualizations. Experimental results showed that BIRCH outperformed some studies in diagnosing Type 2 diabetes, while DBSCAN performed well in diagnosing Colorectal cancer and Inflammatory Bowel Disease.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-024-03264-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial neural networks ; Clustering ; Computer Imaging ; Computer Science ; Hierarchies ; Image Processing and Computer Vision ; Machine learning ; Multimedia Information Systems ; Ordering tasks ; Original Paper ; Pattern Recognition and Graphics ; Signal,Image and Speech Processing ; Task complexity ; Vision</subject><ispartof>Signal, image and video processing, 2024-09, Vol.18 (8-9), p.5685-5699</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-164f3a8a6499ed22de7cc96bea263c5dfc777a610deec974d37856928b887a753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-024-03264-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-024-03264-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Nguyen, Hai Thanh</creatorcontrib><creatorcontrib>Phan, Trang Huyen</creatorcontrib><creatorcontrib>Pham, Linh Thuy Thi</creatorcontrib><creatorcontrib>Pham, Ngoc Huynh</creatorcontrib><title>Clustering-based visualizations for diagnosing diseases on metagenomic data</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Metagenomic data has recently become crucial for precision or personalized medicine. However, these data are often complex, challenging to observe and require sophisticated visualization approaches such as clustering algorithms. Additionally, leveraging the robustness of a simple deep learning architecture, such as a shallow convolutional neural network, has attracted many scientists. Therefore, this study utilized well-known clustering algorithms such as density-based spatial clustering of applications with noise (DBSCAN), balanced iterative reducing and clustering using hierarchies (BIRCH), and ordering points to identify the clustering structure (OPTICS) to identify patterns in complex data and generate visualizations from species abundance composition of various diseases. The study then integrated a shallow convolutional neural network to perform disease prediction tasks on clustering-based visualizations. Experimental results showed that BIRCH outperformed some studies in diagnosing Type 2 diabetes, while DBSCAN performed well in diagnosing Colorectal cancer and Inflammatory Bowel Disease.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Clustering</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Hierarchies</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Multimedia Information Systems</subject><subject>Ordering tasks</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Signal,Image and Speech Processing</subject><subject>Task complexity</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKcFz9HJR5PsUYofxYIXPYc0yZaUdlMzu4L-ereu6M25zBye9x14CLlkcM0A9A0yphVQ4JKC4EpSeUImzChBmWbs9PcGcU5miFsYRnBtlJmQp8Wuxy6W1G7o2mEM1XvC3u3Sp-tSbrFqcqlCcps248AMJ8YBwyq31T52bhPbvE--Cq5zF-SscTuMs589Ja_3dy-LR7p6flgublfUc4COMiUb4YxTsq5j4DxE7X2t1tFxJfw8NF5r7RSDEKOvtQxCm7mquVkbo52eiym5GnsPJb_1ETu7zX1ph5dWgFHAa2mOFB8pXzJiiY09lLR35cMysEdvdvRmB2_225uVQ0iMITwclcTyV_1P6gtgrnCG</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Nguyen, Hai Thanh</creator><creator>Phan, Trang Huyen</creator><creator>Pham, Linh Thuy Thi</creator><creator>Pham, Ngoc Huynh</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>Clustering-based visualizations for diagnosing diseases on metagenomic data</title><author>Nguyen, Hai Thanh ; Phan, Trang Huyen ; Pham, Linh Thuy Thi ; Pham, Ngoc Huynh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-164f3a8a6499ed22de7cc96bea263c5dfc777a610deec974d37856928b887a753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Clustering</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Hierarchies</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Multimedia Information Systems</topic><topic>Ordering tasks</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Signal,Image and Speech Processing</topic><topic>Task complexity</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Hai Thanh</creatorcontrib><creatorcontrib>Phan, Trang Huyen</creatorcontrib><creatorcontrib>Pham, Linh Thuy Thi</creatorcontrib><creatorcontrib>Pham, Ngoc Huynh</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Hai Thanh</au><au>Phan, Trang Huyen</au><au>Pham, Linh Thuy Thi</au><au>Pham, Ngoc Huynh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering-based visualizations for diagnosing diseases on metagenomic data</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>18</volume><issue>8-9</issue><spage>5685</spage><epage>5699</epage><pages>5685-5699</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Metagenomic data has recently become crucial for precision or personalized medicine. However, these data are often complex, challenging to observe and require sophisticated visualization approaches such as clustering algorithms. Additionally, leveraging the robustness of a simple deep learning architecture, such as a shallow convolutional neural network, has attracted many scientists. Therefore, this study utilized well-known clustering algorithms such as density-based spatial clustering of applications with noise (DBSCAN), balanced iterative reducing and clustering using hierarchies (BIRCH), and ordering points to identify the clustering structure (OPTICS) to identify patterns in complex data and generate visualizations from species abundance composition of various diseases. The study then integrated a shallow convolutional neural network to perform disease prediction tasks on clustering-based visualizations. Experimental results showed that BIRCH outperformed some studies in diagnosing Type 2 diabetes, while DBSCAN performed well in diagnosing Colorectal cancer and Inflammatory Bowel Disease.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-024-03264-4</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2024-09, Vol.18 (8-9), p.5685-5699 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_proquest_journals_3086029485 |
source | SpringerNature Journals |
subjects | Algorithms Artificial neural networks Clustering Computer Imaging Computer Science Hierarchies Image Processing and Computer Vision Machine learning Multimedia Information Systems Ordering tasks Original Paper Pattern Recognition and Graphics Signal,Image and Speech Processing Task complexity Vision |
title | Clustering-based visualizations for diagnosing diseases on metagenomic data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering-based%20visualizations%20for%20diagnosing%20diseases%20on%20metagenomic%20data&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Nguyen,%20Hai%20Thanh&rft.date=2024-09-01&rft.volume=18&rft.issue=8-9&rft.spage=5685&rft.epage=5699&rft.pages=5685-5699&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-024-03264-4&rft_dat=%3Cproquest_cross%3E3086029485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086029485&rft_id=info:pmid/&rfr_iscdi=true |