48‐4: Distinguished Paper: Backside Bonding for Extremely Narrow Bezel at the Bottom of Flexible Displays
We developed a novel method to minimize the bezel of flexible displays through backside bonding of a chip on film, resulting in the bezel width of less than 500 μm as compared to 1000 μm of conventional displays. The metal embedded in polyimide (MEP) layer is placed between the first and second po...
Gespeichert in:
Veröffentlicht in: | SID International Symposium Digest of technical papers 2024-06, Vol.55 (1), p.654-657 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 657 |
---|---|
container_issue | 1 |
container_start_page | 654 |
container_title | SID International Symposium Digest of technical papers |
container_volume | 55 |
creator | Lee, Donghyun Lee, Jaehak Seo, Dongkyun Jung, Yangho Lee, Hyunsup Kong, Donghwan Song, Sijoon |
description | We developed a novel method to minimize the bezel of flexible displays through backside bonding of a chip on film, resulting in the bezel width of less than 500 μm as compared to 1000 μm of conventional displays. The metal embedded in polyimide (MEP) layer is placed between the first and second polyimide (PI) substrates and connected to the metal lines of the backplane via the MEP contact (M‐CNT) hole. Subsequently, the nonconductive film (NCF) bonding and intense pulsed light sintering are performed using conductive ink. Conductive ink as the interconnect material capable of low‐temperature sintering is applied to avert thermal degradation and crack. At a high temperature (65 ℃) and humidity (90% relative humidity), the contact resistance was a drivable level for the display after 240 h. The normalized strain in the M‐CNT hole and MEP area were less than 0.4, indicating the absence of cracks during the NCF bonding. These results demonstrated that the backside bonding method was suitable for extremely narrow bezels of the nextgeneration flexible displays. |
doi_str_mv | 10.1002/sdtp.17609 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3085973807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085973807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1059-1ad993ee6f56fabe4d673ebada7c0ab8086fd97f3d71d8db222df7e60ca2c1443</originalsourceid><addsrcrecordid>eNp90EtOwzAQBmALgUQpbDiBJXZIKXYedtwdfQFSBZUoErvIicc0bVoHO1UbVhyBM3ISEsqa1Szmm3-kH6FLSnqUEP_GqarsUc6IOEIdn7LYIzQSx6hDiOCeYOz1FJ05tyQkCMJQdNAqjL8_v8I-HuWuyjdv29wtQOGZLMH28UBmK5crwAOzUc0Wa2PxeF9ZWENR40dprdnhAXxAgWWFq0Urq8qssdF4UsA-Twtoo8tC1u4cnWhZOLj4m130MhnPh_fe9OnuYXg79TJKIuFRqYQIAJiOmJYphIrxAFKpJM-ITGMSM60E14HiVMUq9X1faQ6MZNLPaBgGXXR1yC2ted-Cq5Kl2dpN8zIJSBwJHsSEN-r6oDJrnLOgk9Lma2nrhJKkLTNpy0x-y2wwPeBdXkD9j0yeR_PZ4eYHAdd5CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085973807</pqid></control><display><type>article</type><title>48‐4: Distinguished Paper: Backside Bonding for Extremely Narrow Bezel at the Bottom of Flexible Displays</title><source>Wiley Online Library</source><creator>Lee, Donghyun ; Lee, Jaehak ; Seo, Dongkyun ; Jung, Yangho ; Lee, Hyunsup ; Kong, Donghwan ; Song, Sijoon</creator><creatorcontrib>Lee, Donghyun ; Lee, Jaehak ; Seo, Dongkyun ; Jung, Yangho ; Lee, Hyunsup ; Kong, Donghwan ; Song, Sijoon</creatorcontrib><description>We developed a novel method to minimize the bezel of flexible displays through backside bonding of a chip on film, resulting in the bezel width of less than 500 μm as compared to 1000 μm of conventional displays. The metal embedded in polyimide (MEP) layer is placed between the first and second polyimide (PI) substrates and connected to the metal lines of the backplane via the MEP contact (M‐CNT) hole. Subsequently, the nonconductive film (NCF) bonding and intense pulsed light sintering are performed using conductive ink. Conductive ink as the interconnect material capable of low‐temperature sintering is applied to avert thermal degradation and crack. At a high temperature (65 ℃) and humidity (90% relative humidity), the contact resistance was a drivable level for the display after 240 h. The normalized strain in the M‐CNT hole and MEP area were less than 0.4, indicating the absence of cracks during the NCF bonding. These results demonstrated that the backside bonding method was suitable for extremely narrow bezels of the nextgeneration flexible displays.</description><identifier>ISSN: 0097-966X</identifier><identifier>EISSN: 2168-0159</identifier><identifier>DOI: 10.1002/sdtp.17609</identifier><language>eng</language><publisher>Campbell: Wiley Subscription Services, Inc</publisher><subject>Backplanes ; Backside bonding ; Bonding ; Conductive ink ; Contact resistance ; Displays ; Extreme values ; Flexible display ; High temperature ; Humidity ; MEP ; M‐CNT ; Narrow bezel ; Photodegradation ; Relative humidity ; Sintering ; Substrates ; Thermal degradation</subject><ispartof>SID International Symposium Digest of technical papers, 2024-06, Vol.55 (1), p.654-657</ispartof><rights>2024 The Society for Information Display</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1059-1ad993ee6f56fabe4d673ebada7c0ab8086fd97f3d71d8db222df7e60ca2c1443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsdtp.17609$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsdtp.17609$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lee, Donghyun</creatorcontrib><creatorcontrib>Lee, Jaehak</creatorcontrib><creatorcontrib>Seo, Dongkyun</creatorcontrib><creatorcontrib>Jung, Yangho</creatorcontrib><creatorcontrib>Lee, Hyunsup</creatorcontrib><creatorcontrib>Kong, Donghwan</creatorcontrib><creatorcontrib>Song, Sijoon</creatorcontrib><title>48‐4: Distinguished Paper: Backside Bonding for Extremely Narrow Bezel at the Bottom of Flexible Displays</title><title>SID International Symposium Digest of technical papers</title><description>We developed a novel method to minimize the bezel of flexible displays through backside bonding of a chip on film, resulting in the bezel width of less than 500 μm as compared to 1000 μm of conventional displays. The metal embedded in polyimide (MEP) layer is placed between the first and second polyimide (PI) substrates and connected to the metal lines of the backplane via the MEP contact (M‐CNT) hole. Subsequently, the nonconductive film (NCF) bonding and intense pulsed light sintering are performed using conductive ink. Conductive ink as the interconnect material capable of low‐temperature sintering is applied to avert thermal degradation and crack. At a high temperature (65 ℃) and humidity (90% relative humidity), the contact resistance was a drivable level for the display after 240 h. The normalized strain in the M‐CNT hole and MEP area were less than 0.4, indicating the absence of cracks during the NCF bonding. These results demonstrated that the backside bonding method was suitable for extremely narrow bezels of the nextgeneration flexible displays.</description><subject>Backplanes</subject><subject>Backside bonding</subject><subject>Bonding</subject><subject>Conductive ink</subject><subject>Contact resistance</subject><subject>Displays</subject><subject>Extreme values</subject><subject>Flexible display</subject><subject>High temperature</subject><subject>Humidity</subject><subject>MEP</subject><subject>M‐CNT</subject><subject>Narrow bezel</subject><subject>Photodegradation</subject><subject>Relative humidity</subject><subject>Sintering</subject><subject>Substrates</subject><subject>Thermal degradation</subject><issn>0097-966X</issn><issn>2168-0159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90EtOwzAQBmALgUQpbDiBJXZIKXYedtwdfQFSBZUoErvIicc0bVoHO1UbVhyBM3ISEsqa1Szmm3-kH6FLSnqUEP_GqarsUc6IOEIdn7LYIzQSx6hDiOCeYOz1FJ05tyQkCMJQdNAqjL8_v8I-HuWuyjdv29wtQOGZLMH28UBmK5crwAOzUc0Wa2PxeF9ZWENR40dprdnhAXxAgWWFq0Urq8qssdF4UsA-Twtoo8tC1u4cnWhZOLj4m130MhnPh_fe9OnuYXg79TJKIuFRqYQIAJiOmJYphIrxAFKpJM-ITGMSM60E14HiVMUq9X1faQ6MZNLPaBgGXXR1yC2ted-Cq5Kl2dpN8zIJSBwJHsSEN-r6oDJrnLOgk9Lma2nrhJKkLTNpy0x-y2wwPeBdXkD9j0yeR_PZ4eYHAdd5CQ</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Lee, Donghyun</creator><creator>Lee, Jaehak</creator><creator>Seo, Dongkyun</creator><creator>Jung, Yangho</creator><creator>Lee, Hyunsup</creator><creator>Kong, Donghwan</creator><creator>Song, Sijoon</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202406</creationdate><title>48‐4: Distinguished Paper: Backside Bonding for Extremely Narrow Bezel at the Bottom of Flexible Displays</title><author>Lee, Donghyun ; Lee, Jaehak ; Seo, Dongkyun ; Jung, Yangho ; Lee, Hyunsup ; Kong, Donghwan ; Song, Sijoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1059-1ad993ee6f56fabe4d673ebada7c0ab8086fd97f3d71d8db222df7e60ca2c1443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Backplanes</topic><topic>Backside bonding</topic><topic>Bonding</topic><topic>Conductive ink</topic><topic>Contact resistance</topic><topic>Displays</topic><topic>Extreme values</topic><topic>Flexible display</topic><topic>High temperature</topic><topic>Humidity</topic><topic>MEP</topic><topic>M‐CNT</topic><topic>Narrow bezel</topic><topic>Photodegradation</topic><topic>Relative humidity</topic><topic>Sintering</topic><topic>Substrates</topic><topic>Thermal degradation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Donghyun</creatorcontrib><creatorcontrib>Lee, Jaehak</creatorcontrib><creatorcontrib>Seo, Dongkyun</creatorcontrib><creatorcontrib>Jung, Yangho</creatorcontrib><creatorcontrib>Lee, Hyunsup</creatorcontrib><creatorcontrib>Kong, Donghwan</creatorcontrib><creatorcontrib>Song, Sijoon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SID International Symposium Digest of technical papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Donghyun</au><au>Lee, Jaehak</au><au>Seo, Dongkyun</au><au>Jung, Yangho</au><au>Lee, Hyunsup</au><au>Kong, Donghwan</au><au>Song, Sijoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>48‐4: Distinguished Paper: Backside Bonding for Extremely Narrow Bezel at the Bottom of Flexible Displays</atitle><jtitle>SID International Symposium Digest of technical papers</jtitle><date>2024-06</date><risdate>2024</risdate><volume>55</volume><issue>1</issue><spage>654</spage><epage>657</epage><pages>654-657</pages><issn>0097-966X</issn><eissn>2168-0159</eissn><abstract>We developed a novel method to minimize the bezel of flexible displays through backside bonding of a chip on film, resulting in the bezel width of less than 500 μm as compared to 1000 μm of conventional displays. The metal embedded in polyimide (MEP) layer is placed between the first and second polyimide (PI) substrates and connected to the metal lines of the backplane via the MEP contact (M‐CNT) hole. Subsequently, the nonconductive film (NCF) bonding and intense pulsed light sintering are performed using conductive ink. Conductive ink as the interconnect material capable of low‐temperature sintering is applied to avert thermal degradation and crack. At a high temperature (65 ℃) and humidity (90% relative humidity), the contact resistance was a drivable level for the display after 240 h. The normalized strain in the M‐CNT hole and MEP area were less than 0.4, indicating the absence of cracks during the NCF bonding. These results demonstrated that the backside bonding method was suitable for extremely narrow bezels of the nextgeneration flexible displays.</abstract><cop>Campbell</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/sdtp.17609</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-966X |
ispartof | SID International Symposium Digest of technical papers, 2024-06, Vol.55 (1), p.654-657 |
issn | 0097-966X 2168-0159 |
language | eng |
recordid | cdi_proquest_journals_3085973807 |
source | Wiley Online Library |
subjects | Backplanes Backside bonding Bonding Conductive ink Contact resistance Displays Extreme values Flexible display High temperature Humidity MEP M‐CNT Narrow bezel Photodegradation Relative humidity Sintering Substrates Thermal degradation |
title | 48‐4: Distinguished Paper: Backside Bonding for Extremely Narrow Bezel at the Bottom of Flexible Displays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=48%E2%80%904:%20Distinguished%20Paper:%20Backside%20Bonding%20for%20Extremely%20Narrow%20Bezel%20at%20the%20Bottom%20of%20Flexible%20Displays&rft.jtitle=SID%20International%20Symposium%20Digest%20of%20technical%20papers&rft.au=Lee,%20Donghyun&rft.date=2024-06&rft.volume=55&rft.issue=1&rft.spage=654&rft.epage=657&rft.pages=654-657&rft.issn=0097-966X&rft.eissn=2168-0159&rft_id=info:doi/10.1002/sdtp.17609&rft_dat=%3Cproquest_cross%3E3085973807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085973807&rft_id=info:pmid/&rfr_iscdi=true |