48‐4: Distinguished Paper: Backside Bonding for Extremely Narrow Bezel at the Bottom of Flexible Displays

We developed a novel method to minimize the bezel of flexible displays through backside bonding of a chip on film, resulting in the bezel width of less than 500 μm as compared to 1000 μm of conventional displays. The metal embedded in polyimide (MEP) layer is placed between the first and second po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SID International Symposium Digest of technical papers 2024-06, Vol.55 (1), p.654-657
Hauptverfasser: Lee, Donghyun, Lee, Jaehak, Seo, Dongkyun, Jung, Yangho, Lee, Hyunsup, Kong, Donghwan, Song, Sijoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 657
container_issue 1
container_start_page 654
container_title SID International Symposium Digest of technical papers
container_volume 55
creator Lee, Donghyun
Lee, Jaehak
Seo, Dongkyun
Jung, Yangho
Lee, Hyunsup
Kong, Donghwan
Song, Sijoon
description We developed a novel method to minimize the bezel of flexible displays through backside bonding of a chip on film, resulting in the bezel width of less than 500 μm as compared to 1000 μm of conventional displays. The metal embedded in polyimide (MEP) layer is placed between the first and second polyimide (PI) substrates and connected to the metal lines of the backplane via the MEP contact (M‐CNT) hole. Subsequently, the nonconductive film (NCF) bonding and intense pulsed light sintering are performed using conductive ink. Conductive ink as the interconnect material capable of low‐temperature sintering is applied to avert thermal degradation and crack. At a high temperature (65 ℃) and humidity (90% relative humidity), the contact resistance was a drivable level for the display after 240 h. The normalized strain in the M‐CNT hole and MEP area were less than 0.4, indicating the absence of cracks during the NCF bonding. These results demonstrated that the backside bonding method was suitable for extremely narrow bezels of the nextgeneration flexible displays.
doi_str_mv 10.1002/sdtp.17609
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3085973807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085973807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1059-1ad993ee6f56fabe4d673ebada7c0ab8086fd97f3d71d8db222df7e60ca2c1443</originalsourceid><addsrcrecordid>eNp90EtOwzAQBmALgUQpbDiBJXZIKXYedtwdfQFSBZUoErvIicc0bVoHO1UbVhyBM3ISEsqa1Szmm3-kH6FLSnqUEP_GqarsUc6IOEIdn7LYIzQSx6hDiOCeYOz1FJ05tyQkCMJQdNAqjL8_v8I-HuWuyjdv29wtQOGZLMH28UBmK5crwAOzUc0Wa2PxeF9ZWENR40dprdnhAXxAgWWFq0Urq8qssdF4UsA-Twtoo8tC1u4cnWhZOLj4m130MhnPh_fe9OnuYXg79TJKIuFRqYQIAJiOmJYphIrxAFKpJM-ITGMSM60E14HiVMUq9X1faQ6MZNLPaBgGXXR1yC2ted-Cq5Kl2dpN8zIJSBwJHsSEN-r6oDJrnLOgk9Lma2nrhJKkLTNpy0x-y2wwPeBdXkD9j0yeR_PZ4eYHAdd5CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085973807</pqid></control><display><type>article</type><title>48‐4: Distinguished Paper: Backside Bonding for Extremely Narrow Bezel at the Bottom of Flexible Displays</title><source>Wiley Online Library</source><creator>Lee, Donghyun ; Lee, Jaehak ; Seo, Dongkyun ; Jung, Yangho ; Lee, Hyunsup ; Kong, Donghwan ; Song, Sijoon</creator><creatorcontrib>Lee, Donghyun ; Lee, Jaehak ; Seo, Dongkyun ; Jung, Yangho ; Lee, Hyunsup ; Kong, Donghwan ; Song, Sijoon</creatorcontrib><description>We developed a novel method to minimize the bezel of flexible displays through backside bonding of a chip on film, resulting in the bezel width of less than 500 μm as compared to 1000 μm of conventional displays. The metal embedded in polyimide (MEP) layer is placed between the first and second polyimide (PI) substrates and connected to the metal lines of the backplane via the MEP contact (M‐CNT) hole. Subsequently, the nonconductive film (NCF) bonding and intense pulsed light sintering are performed using conductive ink. Conductive ink as the interconnect material capable of low‐temperature sintering is applied to avert thermal degradation and crack. At a high temperature (65 ℃) and humidity (90% relative humidity), the contact resistance was a drivable level for the display after 240 h. The normalized strain in the M‐CNT hole and MEP area were less than 0.4, indicating the absence of cracks during the NCF bonding. These results demonstrated that the backside bonding method was suitable for extremely narrow bezels of the nextgeneration flexible displays.</description><identifier>ISSN: 0097-966X</identifier><identifier>EISSN: 2168-0159</identifier><identifier>DOI: 10.1002/sdtp.17609</identifier><language>eng</language><publisher>Campbell: Wiley Subscription Services, Inc</publisher><subject>Backplanes ; Backside bonding ; Bonding ; Conductive ink ; Contact resistance ; Displays ; Extreme values ; Flexible display ; High temperature ; Humidity ; MEP ; M‐CNT ; Narrow bezel ; Photodegradation ; Relative humidity ; Sintering ; Substrates ; Thermal degradation</subject><ispartof>SID International Symposium Digest of technical papers, 2024-06, Vol.55 (1), p.654-657</ispartof><rights>2024 The Society for Information Display</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1059-1ad993ee6f56fabe4d673ebada7c0ab8086fd97f3d71d8db222df7e60ca2c1443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsdtp.17609$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsdtp.17609$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lee, Donghyun</creatorcontrib><creatorcontrib>Lee, Jaehak</creatorcontrib><creatorcontrib>Seo, Dongkyun</creatorcontrib><creatorcontrib>Jung, Yangho</creatorcontrib><creatorcontrib>Lee, Hyunsup</creatorcontrib><creatorcontrib>Kong, Donghwan</creatorcontrib><creatorcontrib>Song, Sijoon</creatorcontrib><title>48‐4: Distinguished Paper: Backside Bonding for Extremely Narrow Bezel at the Bottom of Flexible Displays</title><title>SID International Symposium Digest of technical papers</title><description>We developed a novel method to minimize the bezel of flexible displays through backside bonding of a chip on film, resulting in the bezel width of less than 500 μm as compared to 1000 μm of conventional displays. The metal embedded in polyimide (MEP) layer is placed between the first and second polyimide (PI) substrates and connected to the metal lines of the backplane via the MEP contact (M‐CNT) hole. Subsequently, the nonconductive film (NCF) bonding and intense pulsed light sintering are performed using conductive ink. Conductive ink as the interconnect material capable of low‐temperature sintering is applied to avert thermal degradation and crack. At a high temperature (65 ℃) and humidity (90% relative humidity), the contact resistance was a drivable level for the display after 240 h. The normalized strain in the M‐CNT hole and MEP area were less than 0.4, indicating the absence of cracks during the NCF bonding. These results demonstrated that the backside bonding method was suitable for extremely narrow bezels of the nextgeneration flexible displays.</description><subject>Backplanes</subject><subject>Backside bonding</subject><subject>Bonding</subject><subject>Conductive ink</subject><subject>Contact resistance</subject><subject>Displays</subject><subject>Extreme values</subject><subject>Flexible display</subject><subject>High temperature</subject><subject>Humidity</subject><subject>MEP</subject><subject>M‐CNT</subject><subject>Narrow bezel</subject><subject>Photodegradation</subject><subject>Relative humidity</subject><subject>Sintering</subject><subject>Substrates</subject><subject>Thermal degradation</subject><issn>0097-966X</issn><issn>2168-0159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90EtOwzAQBmALgUQpbDiBJXZIKXYedtwdfQFSBZUoErvIicc0bVoHO1UbVhyBM3ISEsqa1Szmm3-kH6FLSnqUEP_GqarsUc6IOEIdn7LYIzQSx6hDiOCeYOz1FJ05tyQkCMJQdNAqjL8_v8I-HuWuyjdv29wtQOGZLMH28UBmK5crwAOzUc0Wa2PxeF9ZWENR40dprdnhAXxAgWWFq0Urq8qssdF4UsA-Twtoo8tC1u4cnWhZOLj4m130MhnPh_fe9OnuYXg79TJKIuFRqYQIAJiOmJYphIrxAFKpJM-ITGMSM60E14HiVMUq9X1faQ6MZNLPaBgGXXR1yC2ted-Cq5Kl2dpN8zIJSBwJHsSEN-r6oDJrnLOgk9Lma2nrhJKkLTNpy0x-y2wwPeBdXkD9j0yeR_PZ4eYHAdd5CQ</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Lee, Donghyun</creator><creator>Lee, Jaehak</creator><creator>Seo, Dongkyun</creator><creator>Jung, Yangho</creator><creator>Lee, Hyunsup</creator><creator>Kong, Donghwan</creator><creator>Song, Sijoon</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202406</creationdate><title>48‐4: Distinguished Paper: Backside Bonding for Extremely Narrow Bezel at the Bottom of Flexible Displays</title><author>Lee, Donghyun ; Lee, Jaehak ; Seo, Dongkyun ; Jung, Yangho ; Lee, Hyunsup ; Kong, Donghwan ; Song, Sijoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1059-1ad993ee6f56fabe4d673ebada7c0ab8086fd97f3d71d8db222df7e60ca2c1443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Backplanes</topic><topic>Backside bonding</topic><topic>Bonding</topic><topic>Conductive ink</topic><topic>Contact resistance</topic><topic>Displays</topic><topic>Extreme values</topic><topic>Flexible display</topic><topic>High temperature</topic><topic>Humidity</topic><topic>MEP</topic><topic>M‐CNT</topic><topic>Narrow bezel</topic><topic>Photodegradation</topic><topic>Relative humidity</topic><topic>Sintering</topic><topic>Substrates</topic><topic>Thermal degradation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Donghyun</creatorcontrib><creatorcontrib>Lee, Jaehak</creatorcontrib><creatorcontrib>Seo, Dongkyun</creatorcontrib><creatorcontrib>Jung, Yangho</creatorcontrib><creatorcontrib>Lee, Hyunsup</creatorcontrib><creatorcontrib>Kong, Donghwan</creatorcontrib><creatorcontrib>Song, Sijoon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SID International Symposium Digest of technical papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Donghyun</au><au>Lee, Jaehak</au><au>Seo, Dongkyun</au><au>Jung, Yangho</au><au>Lee, Hyunsup</au><au>Kong, Donghwan</au><au>Song, Sijoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>48‐4: Distinguished Paper: Backside Bonding for Extremely Narrow Bezel at the Bottom of Flexible Displays</atitle><jtitle>SID International Symposium Digest of technical papers</jtitle><date>2024-06</date><risdate>2024</risdate><volume>55</volume><issue>1</issue><spage>654</spage><epage>657</epage><pages>654-657</pages><issn>0097-966X</issn><eissn>2168-0159</eissn><abstract>We developed a novel method to minimize the bezel of flexible displays through backside bonding of a chip on film, resulting in the bezel width of less than 500 μm as compared to 1000 μm of conventional displays. The metal embedded in polyimide (MEP) layer is placed between the first and second polyimide (PI) substrates and connected to the metal lines of the backplane via the MEP contact (M‐CNT) hole. Subsequently, the nonconductive film (NCF) bonding and intense pulsed light sintering are performed using conductive ink. Conductive ink as the interconnect material capable of low‐temperature sintering is applied to avert thermal degradation and crack. At a high temperature (65 ℃) and humidity (90% relative humidity), the contact resistance was a drivable level for the display after 240 h. The normalized strain in the M‐CNT hole and MEP area were less than 0.4, indicating the absence of cracks during the NCF bonding. These results demonstrated that the backside bonding method was suitable for extremely narrow bezels of the nextgeneration flexible displays.</abstract><cop>Campbell</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/sdtp.17609</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-966X
ispartof SID International Symposium Digest of technical papers, 2024-06, Vol.55 (1), p.654-657
issn 0097-966X
2168-0159
language eng
recordid cdi_proquest_journals_3085973807
source Wiley Online Library
subjects Backplanes
Backside bonding
Bonding
Conductive ink
Contact resistance
Displays
Extreme values
Flexible display
High temperature
Humidity
MEP
M‐CNT
Narrow bezel
Photodegradation
Relative humidity
Sintering
Substrates
Thermal degradation
title 48‐4: Distinguished Paper: Backside Bonding for Extremely Narrow Bezel at the Bottom of Flexible Displays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=48%E2%80%904:%20Distinguished%20Paper:%20Backside%20Bonding%20for%20Extremely%20Narrow%20Bezel%20at%20the%20Bottom%20of%20Flexible%20Displays&rft.jtitle=SID%20International%20Symposium%20Digest%20of%20technical%20papers&rft.au=Lee,%20Donghyun&rft.date=2024-06&rft.volume=55&rft.issue=1&rft.spage=654&rft.epage=657&rft.pages=654-657&rft.issn=0097-966X&rft.eissn=2168-0159&rft_id=info:doi/10.1002/sdtp.17609&rft_dat=%3Cproquest_cross%3E3085973807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085973807&rft_id=info:pmid/&rfr_iscdi=true