Rider surveillance to ensure wearing of helmet and to assistpatrol for safety drive using deep learning approaches

Road safety is a major concern in today’s world, and the use of helmets while driving two-wheelers is an important measureto reduce the risk of head injuries. The identification of vehicles through their number plates is an important aspect of law enforcement. In this paper, we propose an automatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gopi, S., Gokul, P., Charan, M., Lingesan, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3075
creator Gopi, S.
Gokul, P.
Charan, M.
Lingesan, R.
description Road safety is a major concern in today’s world, and the use of helmets while driving two-wheelers is an important measureto reduce the risk of head injuries. The identification of vehicles through their number plates is an important aspect of law enforcement. In this paper, we propose an automatic helmet and dirty number plate identification using computer vision techniques and deep learning. The system employs object detection algorithms to detect helmets and number plates in real-time images captured by a camera. The proposed system can accurately detect the presence or absence of helmets on riders and read the number plates of vehicles. The system’seffectiveness was demonstrated through experiments on a large dataset of images, and the results showed that the proposed system achieves high accuracy and fast processing speed. The proposed system has the potential to be integrated into existing traffic surveillance systems to improve road safety and law enforcement.
doi_str_mv 10.1063/5.0217349
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3085724304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085724304</sourcerecordid><originalsourceid>FETCH-LOGICAL-p639-c352a815173412ba66cf731228b0332a53d2516db2a1da989ec00bf93f4b020c3</originalsourceid><addsrcrecordid>eNotkE1rwzAMhs3YYFm3w_6BYbdBOtmO83EcZV9QGIwedgtKrKwuaZLZTkf__RLak5D06nnRy9i9gKWAVD3pJUiRqaS4YJHQWsRZKtJLFgEUSSwT9X3NbrzfAcgiy_KIuS9ryHE_ugPZtsWuJh56Tt00If5H6Gz3w_uGb6ndU-DYmXmP3lsfBgyub3nTTwBsKBy5cfZAfPTzkSEaeDsRurnDYXA91lvyt-yqwdbT3bku2Ob1ZbN6j9efbx-r53U8pKqIa6Ul5kLPzwhZYZrWTaaElHkFSknUykgtUlNJFAaLvKAaoGoK1SQVSKjVgj2csJPv70g-lLt-dN3kWCrIdTaFAcmkejypfG0DBtt35eDsHt2xFFDOkZa6PEeq_gGSgGlW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3085724304</pqid></control><display><type>conference_proceeding</type><title>Rider surveillance to ensure wearing of helmet and to assistpatrol for safety drive using deep learning approaches</title><source>AIP Journals (American Institute of Physics)</source><creator>Gopi, S. ; Gokul, P. ; Charan, M. ; Lingesan, R.</creator><contributor>Godfrey Winster, S ; Pushpalatha, M ; Baskar, M ; Kishore Anthuvan Sahayaraj, K</contributor><creatorcontrib>Gopi, S. ; Gokul, P. ; Charan, M. ; Lingesan, R. ; Godfrey Winster, S ; Pushpalatha, M ; Baskar, M ; Kishore Anthuvan Sahayaraj, K</creatorcontrib><description>Road safety is a major concern in today’s world, and the use of helmets while driving two-wheelers is an important measureto reduce the risk of head injuries. The identification of vehicles through their number plates is an important aspect of law enforcement. In this paper, we propose an automatic helmet and dirty number plate identification using computer vision techniques and deep learning. The system employs object detection algorithms to detect helmets and number plates in real-time images captured by a camera. The proposed system can accurately detect the presence or absence of helmets on riders and read the number plates of vehicles. The system’seffectiveness was demonstrated through experiments on a large dataset of images, and the results showed that the proposed system achieves high accuracy and fast processing speed. The proposed system has the potential to be integrated into existing traffic surveillance systems to improve road safety and law enforcement.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0217349</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Automatic vehicle identification systems ; Computer vision ; Deep learning ; Head injuries ; Helmets ; Law enforcement ; Machine learning ; Object recognition ; Real time ; Roads ; Surveillance systems ; Traffic safety ; Traffic surveillance</subject><ispartof>AIP Conference Proceedings, 2024, Vol.3075 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0217349$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Godfrey Winster, S</contributor><contributor>Pushpalatha, M</contributor><contributor>Baskar, M</contributor><contributor>Kishore Anthuvan Sahayaraj, K</contributor><creatorcontrib>Gopi, S.</creatorcontrib><creatorcontrib>Gokul, P.</creatorcontrib><creatorcontrib>Charan, M.</creatorcontrib><creatorcontrib>Lingesan, R.</creatorcontrib><title>Rider surveillance to ensure wearing of helmet and to assistpatrol for safety drive using deep learning approaches</title><title>AIP Conference Proceedings</title><description>Road safety is a major concern in today’s world, and the use of helmets while driving two-wheelers is an important measureto reduce the risk of head injuries. The identification of vehicles through their number plates is an important aspect of law enforcement. In this paper, we propose an automatic helmet and dirty number plate identification using computer vision techniques and deep learning. The system employs object detection algorithms to detect helmets and number plates in real-time images captured by a camera. The proposed system can accurately detect the presence or absence of helmets on riders and read the number plates of vehicles. The system’seffectiveness was demonstrated through experiments on a large dataset of images, and the results showed that the proposed system achieves high accuracy and fast processing speed. The proposed system has the potential to be integrated into existing traffic surveillance systems to improve road safety and law enforcement.</description><subject>Algorithms</subject><subject>Automatic vehicle identification systems</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Head injuries</subject><subject>Helmets</subject><subject>Law enforcement</subject><subject>Machine learning</subject><subject>Object recognition</subject><subject>Real time</subject><subject>Roads</subject><subject>Surveillance systems</subject><subject>Traffic safety</subject><subject>Traffic surveillance</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1rwzAMhs3YYFm3w_6BYbdBOtmO83EcZV9QGIwedgtKrKwuaZLZTkf__RLak5D06nnRy9i9gKWAVD3pJUiRqaS4YJHQWsRZKtJLFgEUSSwT9X3NbrzfAcgiy_KIuS9ryHE_ugPZtsWuJh56Tt00If5H6Gz3w_uGb6ndU-DYmXmP3lsfBgyub3nTTwBsKBy5cfZAfPTzkSEaeDsRurnDYXA91lvyt-yqwdbT3bku2Ob1ZbN6j9efbx-r53U8pKqIa6Ul5kLPzwhZYZrWTaaElHkFSknUykgtUlNJFAaLvKAaoGoK1SQVSKjVgj2csJPv70g-lLt-dN3kWCrIdTaFAcmkejypfG0DBtt35eDsHt2xFFDOkZa6PEeq_gGSgGlW</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Gopi, S.</creator><creator>Gokul, P.</creator><creator>Charan, M.</creator><creator>Lingesan, R.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240729</creationdate><title>Rider surveillance to ensure wearing of helmet and to assistpatrol for safety drive using deep learning approaches</title><author>Gopi, S. ; Gokul, P. ; Charan, M. ; Lingesan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p639-c352a815173412ba66cf731228b0332a53d2516db2a1da989ec00bf93f4b020c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Automatic vehicle identification systems</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Head injuries</topic><topic>Helmets</topic><topic>Law enforcement</topic><topic>Machine learning</topic><topic>Object recognition</topic><topic>Real time</topic><topic>Roads</topic><topic>Surveillance systems</topic><topic>Traffic safety</topic><topic>Traffic surveillance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gopi, S.</creatorcontrib><creatorcontrib>Gokul, P.</creatorcontrib><creatorcontrib>Charan, M.</creatorcontrib><creatorcontrib>Lingesan, R.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gopi, S.</au><au>Gokul, P.</au><au>Charan, M.</au><au>Lingesan, R.</au><au>Godfrey Winster, S</au><au>Pushpalatha, M</au><au>Baskar, M</au><au>Kishore Anthuvan Sahayaraj, K</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Rider surveillance to ensure wearing of helmet and to assistpatrol for safety drive using deep learning approaches</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-07-29</date><risdate>2024</risdate><volume>3075</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Road safety is a major concern in today’s world, and the use of helmets while driving two-wheelers is an important measureto reduce the risk of head injuries. The identification of vehicles through their number plates is an important aspect of law enforcement. In this paper, we propose an automatic helmet and dirty number plate identification using computer vision techniques and deep learning. The system employs object detection algorithms to detect helmets and number plates in real-time images captured by a camera. The proposed system can accurately detect the presence or absence of helmets on riders and read the number plates of vehicles. The system’seffectiveness was demonstrated through experiments on a large dataset of images, and the results showed that the proposed system achieves high accuracy and fast processing speed. The proposed system has the potential to be integrated into existing traffic surveillance systems to improve road safety and law enforcement.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0217349</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2024, Vol.3075 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3085724304
source AIP Journals (American Institute of Physics)
subjects Algorithms
Automatic vehicle identification systems
Computer vision
Deep learning
Head injuries
Helmets
Law enforcement
Machine learning
Object recognition
Real time
Roads
Surveillance systems
Traffic safety
Traffic surveillance
title Rider surveillance to ensure wearing of helmet and to assistpatrol for safety drive using deep learning approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Rider%20surveillance%20to%20ensure%20wearing%20of%20helmet%20and%20to%20assistpatrol%20for%20safety%20drive%20using%20deep%20learning%20approaches&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Gopi,%20S.&rft.date=2024-07-29&rft.volume=3075&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0217349&rft_dat=%3Cproquest_scita%3E3085724304%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085724304&rft_id=info:pmid/&rfr_iscdi=true