Agricultural crop recommender system based on climatic conditions
This study presents the development of an agricultural crop recommender system based on climatic conditions usingmachine learning. The system utilizes weather data and other environmental factors to provide recommendations for crops that are most suitable for a given region. To train the ML model, a...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3075 |
creator | Rakesh, Kommineni Chaitanya, Tummala Kumar, K. Pradeep Mohan |
description | This study presents the development of an agricultural crop recommender system based on climatic conditions usingmachine learning. The system utilizes weather data and other environmental factors to provide recommendations for crops that are most suitable for a given region. To train the ML model, a dataset of previous crop yields and climate data was gatheredand examined. The model was assessed using a number of measures, including precision and accuracy. The results show that the system can accurately predict suitable crops for a given location, making it a valuable tool for farmers and agricultural experts. The system has the potential to improve crop yields and mitigate the impact of climate change on agriculture. |
doi_str_mv | 10.1063/5.0217584 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3085724161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085724161</sourcerecordid><originalsourceid>FETCH-LOGICAL-p634-50f670b275f1f921f96ee68d631df12257b14aaef27a0c17f0f1ffc785804d683</originalsourceid><addsrcrecordid>eNotkD1rwzAYhEVpoWnaof9A0K3g9H31nTGEfkGgS4ZuQpGl4mBbrmQP-fd1aIbjloe74wh5RFghKP4iV8BQSyOuyAKlxEorVNdkAbAWFRP8-5bclXIEYGutzYJsNj-58VM7Ttm11Oc00Bx86rrQ1yHTcipj6OjBlVDT1FPfNp0bG0996utmbFJf7slNdG0JDxdfkv3b6377Ue2-3j-3m101KC4qCVFpODAtI8Y1m6VCUKZWHOuIjEl9QOFciEw78KgjzFz02kgDolaGL8nTf-yQ0-8UymiPacr93Gg5GKmZQIUz9fxPFd-M7rzPDnmenE8WwZ4fstJeHuJ_JNRXrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3085724161</pqid></control><display><type>conference_proceeding</type><title>Agricultural crop recommender system based on climatic conditions</title><source>AIP Journals Complete</source><creator>Rakesh, Kommineni ; Chaitanya, Tummala ; Kumar, K. Pradeep Mohan</creator><contributor>Godfrey Winster, S ; Pushpalatha, M ; Baskar, M ; Kishore Anthuvan Sahayaraj, K</contributor><creatorcontrib>Rakesh, Kommineni ; Chaitanya, Tummala ; Kumar, K. Pradeep Mohan ; Godfrey Winster, S ; Pushpalatha, M ; Baskar, M ; Kishore Anthuvan Sahayaraj, K</creatorcontrib><description>This study presents the development of an agricultural crop recommender system based on climatic conditions usingmachine learning. The system utilizes weather data and other environmental factors to provide recommendations for crops that are most suitable for a given region. To train the ML model, a dataset of previous crop yields and climate data was gatheredand examined. The model was assessed using a number of measures, including precision and accuracy. The results show that the system can accurately predict suitable crops for a given location, making it a valuable tool for farmers and agricultural experts. The system has the potential to improve crop yields and mitigate the impact of climate change on agriculture.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0217584</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Crop yield ; Meteorological data ; Recommender systems</subject><ispartof>AIP conference proceedings, 2024, Vol.3075 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0217584$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Godfrey Winster, S</contributor><contributor>Pushpalatha, M</contributor><contributor>Baskar, M</contributor><contributor>Kishore Anthuvan Sahayaraj, K</contributor><creatorcontrib>Rakesh, Kommineni</creatorcontrib><creatorcontrib>Chaitanya, Tummala</creatorcontrib><creatorcontrib>Kumar, K. Pradeep Mohan</creatorcontrib><title>Agricultural crop recommender system based on climatic conditions</title><title>AIP conference proceedings</title><description>This study presents the development of an agricultural crop recommender system based on climatic conditions usingmachine learning. The system utilizes weather data and other environmental factors to provide recommendations for crops that are most suitable for a given region. To train the ML model, a dataset of previous crop yields and climate data was gatheredand examined. The model was assessed using a number of measures, including precision and accuracy. The results show that the system can accurately predict suitable crops for a given location, making it a valuable tool for farmers and agricultural experts. The system has the potential to improve crop yields and mitigate the impact of climate change on agriculture.</description><subject>Crop yield</subject><subject>Meteorological data</subject><subject>Recommender systems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkD1rwzAYhEVpoWnaof9A0K3g9H31nTGEfkGgS4ZuQpGl4mBbrmQP-fd1aIbjloe74wh5RFghKP4iV8BQSyOuyAKlxEorVNdkAbAWFRP8-5bclXIEYGutzYJsNj-58VM7Ttm11Oc00Bx86rrQ1yHTcipj6OjBlVDT1FPfNp0bG0996utmbFJf7slNdG0JDxdfkv3b6377Ue2-3j-3m101KC4qCVFpODAtI8Y1m6VCUKZWHOuIjEl9QOFciEw78KgjzFz02kgDolaGL8nTf-yQ0-8UymiPacr93Gg5GKmZQIUz9fxPFd-M7rzPDnmenE8WwZ4fstJeHuJ_JNRXrw</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Rakesh, Kommineni</creator><creator>Chaitanya, Tummala</creator><creator>Kumar, K. Pradeep Mohan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240729</creationdate><title>Agricultural crop recommender system based on climatic conditions</title><author>Rakesh, Kommineni ; Chaitanya, Tummala ; Kumar, K. Pradeep Mohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p634-50f670b275f1f921f96ee68d631df12257b14aaef27a0c17f0f1ffc785804d683</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crop yield</topic><topic>Meteorological data</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakesh, Kommineni</creatorcontrib><creatorcontrib>Chaitanya, Tummala</creatorcontrib><creatorcontrib>Kumar, K. Pradeep Mohan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakesh, Kommineni</au><au>Chaitanya, Tummala</au><au>Kumar, K. Pradeep Mohan</au><au>Godfrey Winster, S</au><au>Pushpalatha, M</au><au>Baskar, M</au><au>Kishore Anthuvan Sahayaraj, K</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Agricultural crop recommender system based on climatic conditions</atitle><btitle>AIP conference proceedings</btitle><date>2024-07-29</date><risdate>2024</risdate><volume>3075</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This study presents the development of an agricultural crop recommender system based on climatic conditions usingmachine learning. The system utilizes weather data and other environmental factors to provide recommendations for crops that are most suitable for a given region. To train the ML model, a dataset of previous crop yields and climate data was gatheredand examined. The model was assessed using a number of measures, including precision and accuracy. The results show that the system can accurately predict suitable crops for a given location, making it a valuable tool for farmers and agricultural experts. The system has the potential to improve crop yields and mitigate the impact of climate change on agriculture.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0217584</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3075 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3085724161 |
source | AIP Journals Complete |
subjects | Crop yield Meteorological data Recommender systems |
title | Agricultural crop recommender system based on climatic conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Agricultural%20crop%20recommender%20system%20based%20on%20climatic%20conditions&rft.btitle=AIP%20conference%20proceedings&rft.au=Rakesh,%20Kommineni&rft.date=2024-07-29&rft.volume=3075&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0217584&rft_dat=%3Cproquest_scita%3E3085724161%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085724161&rft_id=info:pmid/&rfr_iscdi=true |