Agricultural crop recommender system based on climatic conditions

This study presents the development of an agricultural crop recommender system based on climatic conditions usingmachine learning. The system utilizes weather data and other environmental factors to provide recommendations for crops that are most suitable for a given region. To train the ML model, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rakesh, Kommineni, Chaitanya, Tummala, Kumar, K. Pradeep Mohan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3075
creator Rakesh, Kommineni
Chaitanya, Tummala
Kumar, K. Pradeep Mohan
description This study presents the development of an agricultural crop recommender system based on climatic conditions usingmachine learning. The system utilizes weather data and other environmental factors to provide recommendations for crops that are most suitable for a given region. To train the ML model, a dataset of previous crop yields and climate data was gatheredand examined. The model was assessed using a number of measures, including precision and accuracy. The results show that the system can accurately predict suitable crops for a given location, making it a valuable tool for farmers and agricultural experts. The system has the potential to improve crop yields and mitigate the impact of climate change on agriculture.
doi_str_mv 10.1063/5.0217584
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3085724161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085724161</sourcerecordid><originalsourceid>FETCH-LOGICAL-p634-50f670b275f1f921f96ee68d631df12257b14aaef27a0c17f0f1ffc785804d683</originalsourceid><addsrcrecordid>eNotkD1rwzAYhEVpoWnaof9A0K3g9H31nTGEfkGgS4ZuQpGl4mBbrmQP-fd1aIbjloe74wh5RFghKP4iV8BQSyOuyAKlxEorVNdkAbAWFRP8-5bclXIEYGutzYJsNj-58VM7Ttm11Oc00Bx86rrQ1yHTcipj6OjBlVDT1FPfNp0bG0996utmbFJf7slNdG0JDxdfkv3b6377Ue2-3j-3m101KC4qCVFpODAtI8Y1m6VCUKZWHOuIjEl9QOFciEw78KgjzFz02kgDolaGL8nTf-yQ0-8UymiPacr93Gg5GKmZQIUz9fxPFd-M7rzPDnmenE8WwZ4fstJeHuJ_JNRXrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3085724161</pqid></control><display><type>conference_proceeding</type><title>Agricultural crop recommender system based on climatic conditions</title><source>AIP Journals Complete</source><creator>Rakesh, Kommineni ; Chaitanya, Tummala ; Kumar, K. Pradeep Mohan</creator><contributor>Godfrey Winster, S ; Pushpalatha, M ; Baskar, M ; Kishore Anthuvan Sahayaraj, K</contributor><creatorcontrib>Rakesh, Kommineni ; Chaitanya, Tummala ; Kumar, K. Pradeep Mohan ; Godfrey Winster, S ; Pushpalatha, M ; Baskar, M ; Kishore Anthuvan Sahayaraj, K</creatorcontrib><description>This study presents the development of an agricultural crop recommender system based on climatic conditions usingmachine learning. The system utilizes weather data and other environmental factors to provide recommendations for crops that are most suitable for a given region. To train the ML model, a dataset of previous crop yields and climate data was gatheredand examined. The model was assessed using a number of measures, including precision and accuracy. The results show that the system can accurately predict suitable crops for a given location, making it a valuable tool for farmers and agricultural experts. The system has the potential to improve crop yields and mitigate the impact of climate change on agriculture.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0217584</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Crop yield ; Meteorological data ; Recommender systems</subject><ispartof>AIP conference proceedings, 2024, Vol.3075 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0217584$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Godfrey Winster, S</contributor><contributor>Pushpalatha, M</contributor><contributor>Baskar, M</contributor><contributor>Kishore Anthuvan Sahayaraj, K</contributor><creatorcontrib>Rakesh, Kommineni</creatorcontrib><creatorcontrib>Chaitanya, Tummala</creatorcontrib><creatorcontrib>Kumar, K. Pradeep Mohan</creatorcontrib><title>Agricultural crop recommender system based on climatic conditions</title><title>AIP conference proceedings</title><description>This study presents the development of an agricultural crop recommender system based on climatic conditions usingmachine learning. The system utilizes weather data and other environmental factors to provide recommendations for crops that are most suitable for a given region. To train the ML model, a dataset of previous crop yields and climate data was gatheredand examined. The model was assessed using a number of measures, including precision and accuracy. The results show that the system can accurately predict suitable crops for a given location, making it a valuable tool for farmers and agricultural experts. The system has the potential to improve crop yields and mitigate the impact of climate change on agriculture.</description><subject>Crop yield</subject><subject>Meteorological data</subject><subject>Recommender systems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkD1rwzAYhEVpoWnaof9A0K3g9H31nTGEfkGgS4ZuQpGl4mBbrmQP-fd1aIbjloe74wh5RFghKP4iV8BQSyOuyAKlxEorVNdkAbAWFRP8-5bclXIEYGutzYJsNj-58VM7Ttm11Oc00Bx86rrQ1yHTcipj6OjBlVDT1FPfNp0bG0996utmbFJf7slNdG0JDxdfkv3b6377Ue2-3j-3m101KC4qCVFpODAtI8Y1m6VCUKZWHOuIjEl9QOFciEw78KgjzFz02kgDolaGL8nTf-yQ0-8UymiPacr93Gg5GKmZQIUz9fxPFd-M7rzPDnmenE8WwZ4fstJeHuJ_JNRXrw</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Rakesh, Kommineni</creator><creator>Chaitanya, Tummala</creator><creator>Kumar, K. Pradeep Mohan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240729</creationdate><title>Agricultural crop recommender system based on climatic conditions</title><author>Rakesh, Kommineni ; Chaitanya, Tummala ; Kumar, K. Pradeep Mohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p634-50f670b275f1f921f96ee68d631df12257b14aaef27a0c17f0f1ffc785804d683</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crop yield</topic><topic>Meteorological data</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakesh, Kommineni</creatorcontrib><creatorcontrib>Chaitanya, Tummala</creatorcontrib><creatorcontrib>Kumar, K. Pradeep Mohan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakesh, Kommineni</au><au>Chaitanya, Tummala</au><au>Kumar, K. Pradeep Mohan</au><au>Godfrey Winster, S</au><au>Pushpalatha, M</au><au>Baskar, M</au><au>Kishore Anthuvan Sahayaraj, K</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Agricultural crop recommender system based on climatic conditions</atitle><btitle>AIP conference proceedings</btitle><date>2024-07-29</date><risdate>2024</risdate><volume>3075</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This study presents the development of an agricultural crop recommender system based on climatic conditions usingmachine learning. The system utilizes weather data and other environmental factors to provide recommendations for crops that are most suitable for a given region. To train the ML model, a dataset of previous crop yields and climate data was gatheredand examined. The model was assessed using a number of measures, including precision and accuracy. The results show that the system can accurately predict suitable crops for a given location, making it a valuable tool for farmers and agricultural experts. The system has the potential to improve crop yields and mitigate the impact of climate change on agriculture.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0217584</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3075 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3085724161
source AIP Journals Complete
subjects Crop yield
Meteorological data
Recommender systems
title Agricultural crop recommender system based on climatic conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Agricultural%20crop%20recommender%20system%20based%20on%20climatic%20conditions&rft.btitle=AIP%20conference%20proceedings&rft.au=Rakesh,%20Kommineni&rft.date=2024-07-29&rft.volume=3075&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0217584&rft_dat=%3Cproquest_scita%3E3085724161%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085724161&rft_id=info:pmid/&rfr_iscdi=true