Tilting and untilting for ideals in perfectoid rings

For a perfectoid ring R of characteristic 0 with tilt R ♭ , we introduce and study a tilting map ( - ) ♭ from the set of p -adically closed ideals of R to the set of ideals of R ♭ and an untilting map ( - ) ♯ from the set of radical ideals of R ♭ to the set of ideals of R . The untilting map ( - ) ♯...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2024-08, Vol.307 (4), Article 66
Hauptverfasser: Dine, Dimitri, Ishizuka, Ryo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Mathematische Zeitschrift
container_volume 307
creator Dine, Dimitri
Ishizuka, Ryo
description For a perfectoid ring R of characteristic 0 with tilt R ♭ , we introduce and study a tilting map ( - ) ♭ from the set of p -adically closed ideals of R to the set of ideals of R ♭ and an untilting map ( - ) ♯ from the set of radical ideals of R ♭ to the set of ideals of R . The untilting map ( - ) ♯ is defined purely algebraically and generalizes the analytically defined untilting map on closed radical ideals of a perfectoid Tate ring of characteristic p introduced in the first author’s previous work. We prove that the two maps J ↦ J ♭ and I ↦ I ♯ define an inclusion-preserving bijection between the set of ideals J of R such that the quotient R / J is perfectoid and the set of p ♭ -adically closed radical ideals of R ♭ , where p ♭ ∈ R ♭ corresponds to a compatible system of p -power roots of a unit multiple of p in R . Finally, we prove that the maps ( - ) ♭ and ( - ) ♯ send (closed) prime ideals to prime ideals and thus define a homeomorphism between the subspace of Spec ( R ) consisting of prime ideals p of R such that R / p is perfectoid and the subspace of Spec ( R ♭ ) consisting of p ♭ -adically closed prime ideals of R ♭ . In particular, we obtain a generalization and a new proof of the main result of the first author’s previous work which concerned prime ideals in perfectoid Tate rings.
doi_str_mv 10.1007/s00209-024-03537-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3085661741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085661741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-f0f4e851da144784d3ca33cb0e50b60bdad11ca7290a68ea0269e0a06179c4823</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9FJMmnaoyzqCgte1nNIk1SyrG1N2oPf3tQuePM0DL_35s8j5JbBPQNQDwmAQ02BIwUhhaLsjKwYCk5ZxcU5WWUuqawUXpKrlA4AGSpcEdyH4xi6j8J0rpi68dS1fSyC8-aYitAVg4-tt2MfXBEzTdfkos3I35zqmrw_P-03W7p7e3ndPO6o5YgjbaFFX0nmDENUFTphjRC2AS-hKaFxxjFmjeI1mLLyBnhZezBQMlVbzHevyd0yd4j91-TTqA_9FLu8UguoZJmFyLKKLyob-5Sib_UQw6eJ35qBntPRSzo6p6N_09GzSSymNMwv-fg3-h_XD6pvZi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085661741</pqid></control><display><type>article</type><title>Tilting and untilting for ideals in perfectoid rings</title><source>SpringerLink Journals</source><creator>Dine, Dimitri ; Ishizuka, Ryo</creator><creatorcontrib>Dine, Dimitri ; Ishizuka, Ryo</creatorcontrib><description>For a perfectoid ring R of characteristic 0 with tilt R ♭ , we introduce and study a tilting map ( - ) ♭ from the set of p -adically closed ideals of R to the set of ideals of R ♭ and an untilting map ( - ) ♯ from the set of radical ideals of R ♭ to the set of ideals of R . The untilting map ( - ) ♯ is defined purely algebraically and generalizes the analytically defined untilting map on closed radical ideals of a perfectoid Tate ring of characteristic p introduced in the first author’s previous work. We prove that the two maps J ↦ J ♭ and I ↦ I ♯ define an inclusion-preserving bijection between the set of ideals J of R such that the quotient R / J is perfectoid and the set of p ♭ -adically closed radical ideals of R ♭ , where p ♭ ∈ R ♭ corresponds to a compatible system of p -power roots of a unit multiple of p in R . Finally, we prove that the maps ( - ) ♭ and ( - ) ♯ send (closed) prime ideals to prime ideals and thus define a homeomorphism between the subspace of Spec ( R ) consisting of prime ideals p of R such that R / p is perfectoid and the subspace of Spec ( R ♭ ) consisting of p ♭ -adically closed prime ideals of R ♭ . In particular, we obtain a generalization and a new proof of the main result of the first author’s previous work which concerned prime ideals in perfectoid Tate rings.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-024-03537-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematics ; Mathematics and Statistics ; Rings (mathematics) ; Subspaces</subject><ispartof>Mathematische Zeitschrift, 2024-08, Vol.307 (4), Article 66</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-f0f4e851da144784d3ca33cb0e50b60bdad11ca7290a68ea0269e0a06179c4823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-024-03537-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-024-03537-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dine, Dimitri</creatorcontrib><creatorcontrib>Ishizuka, Ryo</creatorcontrib><title>Tilting and untilting for ideals in perfectoid rings</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>For a perfectoid ring R of characteristic 0 with tilt R ♭ , we introduce and study a tilting map ( - ) ♭ from the set of p -adically closed ideals of R to the set of ideals of R ♭ and an untilting map ( - ) ♯ from the set of radical ideals of R ♭ to the set of ideals of R . The untilting map ( - ) ♯ is defined purely algebraically and generalizes the analytically defined untilting map on closed radical ideals of a perfectoid Tate ring of characteristic p introduced in the first author’s previous work. We prove that the two maps J ↦ J ♭ and I ↦ I ♯ define an inclusion-preserving bijection between the set of ideals J of R such that the quotient R / J is perfectoid and the set of p ♭ -adically closed radical ideals of R ♭ , where p ♭ ∈ R ♭ corresponds to a compatible system of p -power roots of a unit multiple of p in R . Finally, we prove that the maps ( - ) ♭ and ( - ) ♯ send (closed) prime ideals to prime ideals and thus define a homeomorphism between the subspace of Spec ( R ) consisting of prime ideals p of R such that R / p is perfectoid and the subspace of Spec ( R ♭ ) consisting of p ♭ -adically closed prime ideals of R ♭ . In particular, we obtain a generalization and a new proof of the main result of the first author’s previous work which concerned prime ideals in perfectoid Tate rings.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Rings (mathematics)</subject><subject>Subspaces</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9FJMmnaoyzqCgte1nNIk1SyrG1N2oPf3tQuePM0DL_35s8j5JbBPQNQDwmAQ02BIwUhhaLsjKwYCk5ZxcU5WWUuqawUXpKrlA4AGSpcEdyH4xi6j8J0rpi68dS1fSyC8-aYitAVg4-tt2MfXBEzTdfkos3I35zqmrw_P-03W7p7e3ndPO6o5YgjbaFFX0nmDENUFTphjRC2AS-hKaFxxjFmjeI1mLLyBnhZezBQMlVbzHevyd0yd4j91-TTqA_9FLu8UguoZJmFyLKKLyob-5Sib_UQw6eJ35qBntPRSzo6p6N_09GzSSymNMwv-fg3-h_XD6pvZi4</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Dine, Dimitri</creator><creator>Ishizuka, Ryo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Tilting and untilting for ideals in perfectoid rings</title><author>Dine, Dimitri ; Ishizuka, Ryo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-f0f4e851da144784d3ca33cb0e50b60bdad11ca7290a68ea0269e0a06179c4823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Rings (mathematics)</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dine, Dimitri</creatorcontrib><creatorcontrib>Ishizuka, Ryo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dine, Dimitri</au><au>Ishizuka, Ryo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tilting and untilting for ideals in perfectoid rings</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>307</volume><issue>4</issue><artnum>66</artnum><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>For a perfectoid ring R of characteristic 0 with tilt R ♭ , we introduce and study a tilting map ( - ) ♭ from the set of p -adically closed ideals of R to the set of ideals of R ♭ and an untilting map ( - ) ♯ from the set of radical ideals of R ♭ to the set of ideals of R . The untilting map ( - ) ♯ is defined purely algebraically and generalizes the analytically defined untilting map on closed radical ideals of a perfectoid Tate ring of characteristic p introduced in the first author’s previous work. We prove that the two maps J ↦ J ♭ and I ↦ I ♯ define an inclusion-preserving bijection between the set of ideals J of R such that the quotient R / J is perfectoid and the set of p ♭ -adically closed radical ideals of R ♭ , where p ♭ ∈ R ♭ corresponds to a compatible system of p -power roots of a unit multiple of p in R . Finally, we prove that the maps ( - ) ♭ and ( - ) ♯ send (closed) prime ideals to prime ideals and thus define a homeomorphism between the subspace of Spec ( R ) consisting of prime ideals p of R such that R / p is perfectoid and the subspace of Spec ( R ♭ ) consisting of p ♭ -adically closed prime ideals of R ♭ . In particular, we obtain a generalization and a new proof of the main result of the first author’s previous work which concerned prime ideals in perfectoid Tate rings.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-024-03537-1</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2024-08, Vol.307 (4), Article 66
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_3085661741
source SpringerLink Journals
subjects Mathematics
Mathematics and Statistics
Rings (mathematics)
Subspaces
title Tilting and untilting for ideals in perfectoid rings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A31%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tilting%20and%20untilting%20for%20ideals%20in%20perfectoid%20rings&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Dine,%20Dimitri&rft.date=2024-08-01&rft.volume=307&rft.issue=4&rft.artnum=66&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-024-03537-1&rft_dat=%3Cproquest_cross%3E3085661741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085661741&rft_id=info:pmid/&rfr_iscdi=true