Dynamics and fluid–structure interaction in turbulent flows within and above flexible canopies

Flexible canopy flows are often encountered in natural scenarios, e.g. when crops sway in the wind or when submerged kelp forests are agitated by marine currents. Here, we provide a detailed characterisation of the turbulent flow developed above and between the flexible filaments of a fully submerge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2024-07, Vol.989, Article A11
Hauptverfasser: Foggi Rota, Giulio, Monti, Alessandro, Olivieri, Stefano, Rosti, Marco Edoardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 989
creator Foggi Rota, Giulio
Monti, Alessandro
Olivieri, Stefano
Rosti, Marco Edoardo
description Flexible canopy flows are often encountered in natural scenarios, e.g. when crops sway in the wind or when submerged kelp forests are agitated by marine currents. Here, we provide a detailed characterisation of the turbulent flow developed above and between the flexible filaments of a fully submerged dense canopy and we describe their dynamical response to the turbulent forcing. We investigate a wide range of flexibilities, encompassing the case in which the filaments are completely rigid and standing upright as well as that where they are fully compliant to the flow and deflected in the streamwise direction. We are thus able to isolate the effect of the canopy flexibility on the drag and on the inner–outer flow interactions, as well as the two flapping regimes of the filaments already identified for a single fibre. Furthermore, we offer a detailed description of the Reynolds stresses throughout the wall-normal direction resorting to the Lumley triangle formalism, and we show the multi-layer nature of turbulence inside and above the canopy. The relevance of our investigation is thus twofold: the fundamental physical understanding developed here paves the way towards the investigation of more complex and realistic scenarios, while we also provide a thorough characterisation of the turbulent state that can prove useful in the development of accurate turbulence models for RANS and LES.
doi_str_mv 10.1017/jfm.2024.481
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3085336962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2024_481</cupid><sourcerecordid>3085336962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-507fbd53fa64c0b2b0a58dbaa4f7b11f4d86047592904badb9d1d9a7ca318133</originalsourceid><addsrcrecordid>eNptkMtKw0AUhgdRsFZ3PkDArYlnLskkS6lXKLjpfpyrTkmTOpNYu_MdfEOfxCkW3Lg6h5_vPwc-hM4xFBgwv1q6VUGAsILV-ABNMKuanFesPEQTAEJyjAkco5MYlwCYQsMn6Plm28mV1zGTnclcO3rz_fkVhzDqYQw2891gg9SD77u0ZylTY2u7IaH9JmYbP7ymeNeVqn-3KbYfXrU207Lr197GU3TkZBvt2X5O0eLudjF7yOdP94-z63muCeFDXgJ3ypTUyYppUESBLGujpGSOK4wdM3UFjJcNaYApaVRjsGkk15LiGlM6RRe_Z9ehfxttHMSyH0OXPgoKdUlp1VQkUZe_lA59jME6sQ5-JcNWYBA7hSIpFDuFIilMeLHH5UoFb17s39V_Cz974nYm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085336962</pqid></control><display><type>article</type><title>Dynamics and fluid–structure interaction in turbulent flows within and above flexible canopies</title><source>Cambridge University Press Journals Complete</source><creator>Foggi Rota, Giulio ; Monti, Alessandro ; Olivieri, Stefano ; Rosti, Marco Edoardo</creator><creatorcontrib>Foggi Rota, Giulio ; Monti, Alessandro ; Olivieri, Stefano ; Rosti, Marco Edoardo</creatorcontrib><description>Flexible canopy flows are often encountered in natural scenarios, e.g. when crops sway in the wind or when submerged kelp forests are agitated by marine currents. Here, we provide a detailed characterisation of the turbulent flow developed above and between the flexible filaments of a fully submerged dense canopy and we describe their dynamical response to the turbulent forcing. We investigate a wide range of flexibilities, encompassing the case in which the filaments are completely rigid and standing upright as well as that where they are fully compliant to the flow and deflected in the streamwise direction. We are thus able to isolate the effect of the canopy flexibility on the drag and on the inner–outer flow interactions, as well as the two flapping regimes of the filaments already identified for a single fibre. Furthermore, we offer a detailed description of the Reynolds stresses throughout the wall-normal direction resorting to the Lumley triangle formalism, and we show the multi-layer nature of turbulence inside and above the canopy. The relevance of our investigation is thus twofold: the fundamental physical understanding developed here paves the way towards the investigation of more complex and realistic scenarios, while we also provide a thorough characterisation of the turbulent state that can prove useful in the development of accurate turbulence models for RANS and LES.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2024.481</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Atmospheric boundary layer ; Canopies ; Canopy ; Dynamic structural analysis ; Filaments ; Flapping ; Fluid dynamics ; Fluid flow ; Fluid-structure interaction ; JFM Papers ; Kelp ; Kelp beds ; Multilayers ; Plant cover ; Reynolds stress ; Reynolds stresses ; Simulation ; Turbulence ; Turbulence models ; Turbulent flow ; Velocity ; Vortices</subject><ispartof>Journal of fluid mechanics, 2024-07, Vol.989, Article A11</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press.</rights><rights>The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c227t-507fbd53fa64c0b2b0a58dbaa4f7b11f4d86047592904badb9d1d9a7ca318133</cites><orcidid>0000-0002-9004-2292 ; 0000-0002-4361-6521 ; 0000-0002-7795-6620 ; 0000-0003-2231-2796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112024004816/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Foggi Rota, Giulio</creatorcontrib><creatorcontrib>Monti, Alessandro</creatorcontrib><creatorcontrib>Olivieri, Stefano</creatorcontrib><creatorcontrib>Rosti, Marco Edoardo</creatorcontrib><title>Dynamics and fluid–structure interaction in turbulent flows within and above flexible canopies</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Flexible canopy flows are often encountered in natural scenarios, e.g. when crops sway in the wind or when submerged kelp forests are agitated by marine currents. Here, we provide a detailed characterisation of the turbulent flow developed above and between the flexible filaments of a fully submerged dense canopy and we describe their dynamical response to the turbulent forcing. We investigate a wide range of flexibilities, encompassing the case in which the filaments are completely rigid and standing upright as well as that where they are fully compliant to the flow and deflected in the streamwise direction. We are thus able to isolate the effect of the canopy flexibility on the drag and on the inner–outer flow interactions, as well as the two flapping regimes of the filaments already identified for a single fibre. Furthermore, we offer a detailed description of the Reynolds stresses throughout the wall-normal direction resorting to the Lumley triangle formalism, and we show the multi-layer nature of turbulence inside and above the canopy. The relevance of our investigation is thus twofold: the fundamental physical understanding developed here paves the way towards the investigation of more complex and realistic scenarios, while we also provide a thorough characterisation of the turbulent state that can prove useful in the development of accurate turbulence models for RANS and LES.</description><subject>Atmospheric boundary layer</subject><subject>Canopies</subject><subject>Canopy</subject><subject>Dynamic structural analysis</subject><subject>Filaments</subject><subject>Flapping</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>JFM Papers</subject><subject>Kelp</subject><subject>Kelp beds</subject><subject>Multilayers</subject><subject>Plant cover</subject><subject>Reynolds stress</subject><subject>Reynolds stresses</subject><subject>Simulation</subject><subject>Turbulence</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Vortices</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><recordid>eNptkMtKw0AUhgdRsFZ3PkDArYlnLskkS6lXKLjpfpyrTkmTOpNYu_MdfEOfxCkW3Lg6h5_vPwc-hM4xFBgwv1q6VUGAsILV-ABNMKuanFesPEQTAEJyjAkco5MYlwCYQsMn6Plm28mV1zGTnclcO3rz_fkVhzDqYQw2891gg9SD77u0ZylTY2u7IaH9JmYbP7ymeNeVqn-3KbYfXrU207Lr197GU3TkZBvt2X5O0eLudjF7yOdP94-z63muCeFDXgJ3ypTUyYppUESBLGujpGSOK4wdM3UFjJcNaYApaVRjsGkk15LiGlM6RRe_Z9ehfxttHMSyH0OXPgoKdUlp1VQkUZe_lA59jME6sQ5-JcNWYBA7hSIpFDuFIilMeLHH5UoFb17s39V_Cz974nYm</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Foggi Rota, Giulio</creator><creator>Monti, Alessandro</creator><creator>Olivieri, Stefano</creator><creator>Rosti, Marco Edoardo</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9004-2292</orcidid><orcidid>https://orcid.org/0000-0002-4361-6521</orcidid><orcidid>https://orcid.org/0000-0002-7795-6620</orcidid><orcidid>https://orcid.org/0000-0003-2231-2796</orcidid></search><sort><creationdate>20240729</creationdate><title>Dynamics and fluid–structure interaction in turbulent flows within and above flexible canopies</title><author>Foggi Rota, Giulio ; Monti, Alessandro ; Olivieri, Stefano ; Rosti, Marco Edoardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-507fbd53fa64c0b2b0a58dbaa4f7b11f4d86047592904badb9d1d9a7ca318133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric boundary layer</topic><topic>Canopies</topic><topic>Canopy</topic><topic>Dynamic structural analysis</topic><topic>Filaments</topic><topic>Flapping</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>JFM Papers</topic><topic>Kelp</topic><topic>Kelp beds</topic><topic>Multilayers</topic><topic>Plant cover</topic><topic>Reynolds stress</topic><topic>Reynolds stresses</topic><topic>Simulation</topic><topic>Turbulence</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foggi Rota, Giulio</creatorcontrib><creatorcontrib>Monti, Alessandro</creatorcontrib><creatorcontrib>Olivieri, Stefano</creatorcontrib><creatorcontrib>Rosti, Marco Edoardo</creatorcontrib><collection>Cambridge University Press Wholly Gold Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foggi Rota, Giulio</au><au>Monti, Alessandro</au><au>Olivieri, Stefano</au><au>Rosti, Marco Edoardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics and fluid–structure interaction in turbulent flows within and above flexible canopies</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2024-07-29</date><risdate>2024</risdate><volume>989</volume><artnum>A11</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Flexible canopy flows are often encountered in natural scenarios, e.g. when crops sway in the wind or when submerged kelp forests are agitated by marine currents. Here, we provide a detailed characterisation of the turbulent flow developed above and between the flexible filaments of a fully submerged dense canopy and we describe their dynamical response to the turbulent forcing. We investigate a wide range of flexibilities, encompassing the case in which the filaments are completely rigid and standing upright as well as that where they are fully compliant to the flow and deflected in the streamwise direction. We are thus able to isolate the effect of the canopy flexibility on the drag and on the inner–outer flow interactions, as well as the two flapping regimes of the filaments already identified for a single fibre. Furthermore, we offer a detailed description of the Reynolds stresses throughout the wall-normal direction resorting to the Lumley triangle formalism, and we show the multi-layer nature of turbulence inside and above the canopy. The relevance of our investigation is thus twofold: the fundamental physical understanding developed here paves the way towards the investigation of more complex and realistic scenarios, while we also provide a thorough characterisation of the turbulent state that can prove useful in the development of accurate turbulence models for RANS and LES.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2024.481</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-9004-2292</orcidid><orcidid>https://orcid.org/0000-0002-4361-6521</orcidid><orcidid>https://orcid.org/0000-0002-7795-6620</orcidid><orcidid>https://orcid.org/0000-0003-2231-2796</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2024-07, Vol.989, Article A11
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_3085336962
source Cambridge University Press Journals Complete
subjects Atmospheric boundary layer
Canopies
Canopy
Dynamic structural analysis
Filaments
Flapping
Fluid dynamics
Fluid flow
Fluid-structure interaction
JFM Papers
Kelp
Kelp beds
Multilayers
Plant cover
Reynolds stress
Reynolds stresses
Simulation
Turbulence
Turbulence models
Turbulent flow
Velocity
Vortices
title Dynamics and fluid–structure interaction in turbulent flows within and above flexible canopies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20and%20fluid%E2%80%93structure%20interaction%20in%20turbulent%20flows%20within%20and%20above%20flexible%20canopies&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Foggi%20Rota,%20Giulio&rft.date=2024-07-29&rft.volume=989&rft.artnum=A11&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2024.481&rft_dat=%3Cproquest_cross%3E3085336962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085336962&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2024_481&rfr_iscdi=true