Performance of physical-informed neural network (PINN) for the key parameter inference in Langmuir turbulence parameterization scheme
The Stokes production coefficient ( E 6 ) constitutes a critical parameter within the Mellor-Yamada type (MY-type) Langmuir turbulence (LT) parameterization schemes, significantly affecting the simulation of turbulent kinetic energy, turbulent length scale, and vertical diffusivity coefficient for t...
Gespeichert in:
Veröffentlicht in: | Acta oceanologica Sinica 2024-05, Vol.43 (5), p.121-132 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 132 |
---|---|
container_issue | 5 |
container_start_page | 121 |
container_title | Acta oceanologica Sinica |
container_volume | 43 |
creator | Xiu, Fangrui Deng, Zengan |
description | The Stokes production coefficient (
E
6
) constitutes a critical parameter within the Mellor-Yamada type (MY-type) Langmuir turbulence (LT) parameterization schemes, significantly affecting the simulation of turbulent kinetic energy, turbulent length scale, and vertical diffusivity coefficient for turbulent kinetic energy in the upper ocean. However, the accurate determination of its value remains a pressing scientific challenge. This study adopted an innovative approach by leveraging deep learning technology to address this challenge of inferring the
E
6
. Through the integration of the information of the turbulent length scale equation into a physical-informed neural network (PINN), we achieved an accurate and physically meaningful inference of
E
6
. Multiple cases were examined to assess the feasibility of PINN in this task, revealing that under optimal settings, the average mean squared error of the
E
6
inference was only 0.01, attesting to the effectiveness of PINN. The optimal hyperparameter combination was identified using the Tanh activation function, along with a spatiotemporal sampling interval of 1 s and 0.1 m. This resulted in a substantial reduction in the average bias of the
E
6
inference, ranging from
O
(10
1
) to
O
(10
2
) times compared with other combinations. This study underscores the potential application of PINN in intricate marine environments, offering a novel and efficient method for optimizing MY-type LT parameterization schemes. |
doi_str_mv | 10.1007/s13131-024-2329-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3085226132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085226132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-89290a4ef110eb801a22b0c5e5b1482c681cc8c4434fdd04e8da60987df57e393</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoWKs_wFvAix6ik69t9ijiFxT1oOAtpNnZdmt3tya7SL37v02t6ElkDgMzz_sOzEvIIYdTDjA6i1ymYiAUE1LkTG2RATdZzjjk-TYZgNCSadDPu2QvxjmA5lqOBuTjAUPZhto1Hmlb0uVsFSvvFqxq1mMsaIN9cIvUurc2vNDjh9u7uxOalrSbIX3BFV264GrsMNAkwoBrq6qhY9dM675KXB8m_eJr_INW766r2oZGP8Ma98lO6RYRD777kDxdXT5e3LDx_fXtxfmYeSGyjplc5OAUlpwDTgxwJ8QEvEY94coInxnuvfFKSVUWBSg0hcsgN6Oi1COUuRySo43vMrSvPcbOzts-NOmklWB0OsKl-I_iGcj0zSHhG8qHNsaApV2GqnZhZTnYdSZ2k4lNmdh1JlYljdhoYmKbKYZf579Fn8rjj-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085160325</pqid></control><display><type>article</type><title>Performance of physical-informed neural network (PINN) for the key parameter inference in Langmuir turbulence parameterization scheme</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Xiu, Fangrui ; Deng, Zengan</creator><creatorcontrib>Xiu, Fangrui ; Deng, Zengan</creatorcontrib><description>The Stokes production coefficient (
E
6
) constitutes a critical parameter within the Mellor-Yamada type (MY-type) Langmuir turbulence (LT) parameterization schemes, significantly affecting the simulation of turbulent kinetic energy, turbulent length scale, and vertical diffusivity coefficient for turbulent kinetic energy in the upper ocean. However, the accurate determination of its value remains a pressing scientific challenge. This study adopted an innovative approach by leveraging deep learning technology to address this challenge of inferring the
E
6
. Through the integration of the information of the turbulent length scale equation into a physical-informed neural network (PINN), we achieved an accurate and physically meaningful inference of
E
6
. Multiple cases were examined to assess the feasibility of PINN in this task, revealing that under optimal settings, the average mean squared error of the
E
6
inference was only 0.01, attesting to the effectiveness of PINN. The optimal hyperparameter combination was identified using the Tanh activation function, along with a spatiotemporal sampling interval of 1 s and 0.1 m. This resulted in a substantial reduction in the average bias of the
E
6
inference, ranging from
O
(10
1
) to
O
(10
2
) times compared with other combinations. This study underscores the potential application of PINN in intricate marine environments, offering a novel and efficient method for optimizing MY-type LT parameterization schemes.</description><identifier>ISSN: 0253-505X</identifier><identifier>EISSN: 1869-1099</identifier><identifier>DOI: 10.1007/s13131-024-2329-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Climatology ; Deep learning ; Earth and Environmental Science ; Earth Sciences ; Ecology ; Engineering Fluid Dynamics ; Environmental Chemistry ; Inference ; Kinetic energy ; Langmuir turbulence ; Marine & Freshwater Sciences ; Marine environment ; Neural networks ; Oceanic turbulence ; Oceanography ; Optimization ; Parameterization ; Parameters ; Turbulence ; Turbulent kinetic energy ; Upper ocean ; Vertical diffusion</subject><ispartof>Acta oceanologica Sinica, 2024-05, Vol.43 (5), p.121-132</ispartof><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2024</rights><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-89290a4ef110eb801a22b0c5e5b1482c681cc8c4434fdd04e8da60987df57e393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13131-024-2329-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13131-024-2329-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xiu, Fangrui</creatorcontrib><creatorcontrib>Deng, Zengan</creatorcontrib><title>Performance of physical-informed neural network (PINN) for the key parameter inference in Langmuir turbulence parameterization scheme</title><title>Acta oceanologica Sinica</title><addtitle>Acta Oceanol. Sin</addtitle><description>The Stokes production coefficient (
E
6
) constitutes a critical parameter within the Mellor-Yamada type (MY-type) Langmuir turbulence (LT) parameterization schemes, significantly affecting the simulation of turbulent kinetic energy, turbulent length scale, and vertical diffusivity coefficient for turbulent kinetic energy in the upper ocean. However, the accurate determination of its value remains a pressing scientific challenge. This study adopted an innovative approach by leveraging deep learning technology to address this challenge of inferring the
E
6
. Through the integration of the information of the turbulent length scale equation into a physical-informed neural network (PINN), we achieved an accurate and physically meaningful inference of
E
6
. Multiple cases were examined to assess the feasibility of PINN in this task, revealing that under optimal settings, the average mean squared error of the
E
6
inference was only 0.01, attesting to the effectiveness of PINN. The optimal hyperparameter combination was identified using the Tanh activation function, along with a spatiotemporal sampling interval of 1 s and 0.1 m. This resulted in a substantial reduction in the average bias of the
E
6
inference, ranging from
O
(10
1
) to
O
(10
2
) times compared with other combinations. This study underscores the potential application of PINN in intricate marine environments, offering a novel and efficient method for optimizing MY-type LT parameterization schemes.</description><subject>Climatology</subject><subject>Deep learning</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Engineering Fluid Dynamics</subject><subject>Environmental Chemistry</subject><subject>Inference</subject><subject>Kinetic energy</subject><subject>Langmuir turbulence</subject><subject>Marine & Freshwater Sciences</subject><subject>Marine environment</subject><subject>Neural networks</subject><subject>Oceanic turbulence</subject><subject>Oceanography</subject><subject>Optimization</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Turbulence</subject><subject>Turbulent kinetic energy</subject><subject>Upper ocean</subject><subject>Vertical diffusion</subject><issn>0253-505X</issn><issn>1869-1099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhoMoWKs_wFvAix6ik69t9ijiFxT1oOAtpNnZdmt3tya7SL37v02t6ElkDgMzz_sOzEvIIYdTDjA6i1ymYiAUE1LkTG2RATdZzjjk-TYZgNCSadDPu2QvxjmA5lqOBuTjAUPZhto1Hmlb0uVsFSvvFqxq1mMsaIN9cIvUurc2vNDjh9u7uxOalrSbIX3BFV264GrsMNAkwoBrq6qhY9dM675KXB8m_eJr_INW766r2oZGP8Ma98lO6RYRD777kDxdXT5e3LDx_fXtxfmYeSGyjplc5OAUlpwDTgxwJ8QEvEY94coInxnuvfFKSVUWBSg0hcsgN6Oi1COUuRySo43vMrSvPcbOzts-NOmklWB0OsKl-I_iGcj0zSHhG8qHNsaApV2GqnZhZTnYdSZ2k4lNmdh1JlYljdhoYmKbKYZf579Fn8rjj-Y</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Xiu, Fangrui</creator><creator>Deng, Zengan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H96</scope><scope>H97</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>KL.</scope><scope>SOI</scope></search><sort><creationdate>20240501</creationdate><title>Performance of physical-informed neural network (PINN) for the key parameter inference in Langmuir turbulence parameterization scheme</title><author>Xiu, Fangrui ; Deng, Zengan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-89290a4ef110eb801a22b0c5e5b1482c681cc8c4434fdd04e8da60987df57e393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Climatology</topic><topic>Deep learning</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Engineering Fluid Dynamics</topic><topic>Environmental Chemistry</topic><topic>Inference</topic><topic>Kinetic energy</topic><topic>Langmuir turbulence</topic><topic>Marine & Freshwater Sciences</topic><topic>Marine environment</topic><topic>Neural networks</topic><topic>Oceanic turbulence</topic><topic>Oceanography</topic><topic>Optimization</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Turbulence</topic><topic>Turbulent kinetic energy</topic><topic>Upper ocean</topic><topic>Vertical diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiu, Fangrui</creatorcontrib><creatorcontrib>Deng, Zengan</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Environment Abstracts</collection><jtitle>Acta oceanologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiu, Fangrui</au><au>Deng, Zengan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of physical-informed neural network (PINN) for the key parameter inference in Langmuir turbulence parameterization scheme</atitle><jtitle>Acta oceanologica Sinica</jtitle><stitle>Acta Oceanol. Sin</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>43</volume><issue>5</issue><spage>121</spage><epage>132</epage><pages>121-132</pages><issn>0253-505X</issn><eissn>1869-1099</eissn><abstract>The Stokes production coefficient (
E
6
) constitutes a critical parameter within the Mellor-Yamada type (MY-type) Langmuir turbulence (LT) parameterization schemes, significantly affecting the simulation of turbulent kinetic energy, turbulent length scale, and vertical diffusivity coefficient for turbulent kinetic energy in the upper ocean. However, the accurate determination of its value remains a pressing scientific challenge. This study adopted an innovative approach by leveraging deep learning technology to address this challenge of inferring the
E
6
. Through the integration of the information of the turbulent length scale equation into a physical-informed neural network (PINN), we achieved an accurate and physically meaningful inference of
E
6
. Multiple cases were examined to assess the feasibility of PINN in this task, revealing that under optimal settings, the average mean squared error of the
E
6
inference was only 0.01, attesting to the effectiveness of PINN. The optimal hyperparameter combination was identified using the Tanh activation function, along with a spatiotemporal sampling interval of 1 s and 0.1 m. This resulted in a substantial reduction in the average bias of the
E
6
inference, ranging from
O
(10
1
) to
O
(10
2
) times compared with other combinations. This study underscores the potential application of PINN in intricate marine environments, offering a novel and efficient method for optimizing MY-type LT parameterization schemes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13131-024-2329-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-505X |
ispartof | Acta oceanologica Sinica, 2024-05, Vol.43 (5), p.121-132 |
issn | 0253-505X 1869-1099 |
language | eng |
recordid | cdi_proquest_journals_3085226132 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Climatology Deep learning Earth and Environmental Science Earth Sciences Ecology Engineering Fluid Dynamics Environmental Chemistry Inference Kinetic energy Langmuir turbulence Marine & Freshwater Sciences Marine environment Neural networks Oceanic turbulence Oceanography Optimization Parameterization Parameters Turbulence Turbulent kinetic energy Upper ocean Vertical diffusion |
title | Performance of physical-informed neural network (PINN) for the key parameter inference in Langmuir turbulence parameterization scheme |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20physical-informed%20neural%20network%20(PINN)%20for%20the%20key%20parameter%20inference%20in%20Langmuir%20turbulence%20parameterization%20scheme&rft.jtitle=Acta%20oceanologica%20Sinica&rft.au=Xiu,%20Fangrui&rft.date=2024-05-01&rft.volume=43&rft.issue=5&rft.spage=121&rft.epage=132&rft.pages=121-132&rft.issn=0253-505X&rft.eissn=1869-1099&rft_id=info:doi/10.1007/s13131-024-2329-4&rft_dat=%3Cproquest_cross%3E3085226132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085160325&rft_id=info:pmid/&rfr_iscdi=true |