valued quandles and associated bialgebras
We study -valued quandles and -corack bialgebras. These structures are closely related to topological field theories in dimensions and , to the set-theoretic Yang–Baxter equation, and to the -valued groups, which have attracted considerable attention or researchers. We elaborate the basic methods of...
Gespeichert in:
Veröffentlicht in: | Theoretical and mathematical physics 2024, Vol.220 (1), p.1080-1096 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1096 |
---|---|
container_issue | 1 |
container_start_page | 1080 |
container_title | Theoretical and mathematical physics |
container_volume | 220 |
creator | Bardakov, V. G. Kozlovskaya, T. A. Talalaev, D. V. |
description | We study
-valued quandles and
-corack bialgebras. These structures are closely related to topological field theories in dimensions
and
, to the set-theoretic Yang–Baxter equation, and to the
-valued groups, which have attracted considerable attention or researchers. We elaborate the basic methods of this theory, find an analogue of the so-called coset construction known in the theory of
-valued groups, and construct
-valued quandles using
-multiquandles. In contrast to the case of
-valued groups, this construction turns out to be quite rich in algebraic and topological applications. We study the properties of
-corack bialgebras, which play a role similar to that of bialgebras in group theory. |
doi_str_mv | 10.1134/S0040577924070031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3085226036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085226036</sourcerecordid><originalsourceid>FETCH-LOGICAL-p711-35ad3c42ba2e6c799f78ff1e62a32b9d8f6174c00065f5fae183a6742cf01a593</originalsourceid><addsrcrecordid>eNplkE9Lw0AUxBdRMFY_gLeAJw_R9_btn-xRilah4MHew0uyW1JCkmYbP78JFTx4Gpj5MQMjxD3CEyKp5y8ABdpaJxVYAMILkaC2lDkiuhTJEmdLfi1uYjwAIECOiXj85nbydXqcuKtbH9NZUo6xrxo-zX7ZcLv35cjxVlwFbqO_-9WV2L297tbv2fZz87F-2WaDRcxIc02VkiVLbyrrXLB5COiNZJKlq_Ng0KoKAIwOOrDHnNhYJasAyNrRSjyca4exP04-nopDP43dvFgQ5FpKA2RmSp6pOIxNt_fjH4VQLI8U_x6hH8pSUX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085226036</pqid></control><display><type>article</type><title>valued quandles and associated bialgebras</title><source>SpringerLink Journals</source><creator>Bardakov, V. G. ; Kozlovskaya, T. A. ; Talalaev, D. V.</creator><creatorcontrib>Bardakov, V. G. ; Kozlovskaya, T. A. ; Talalaev, D. V.</creatorcontrib><description>We study
-valued quandles and
-corack bialgebras. These structures are closely related to topological field theories in dimensions
and
, to the set-theoretic Yang–Baxter equation, and to the
-valued groups, which have attracted considerable attention or researchers. We elaborate the basic methods of this theory, find an analogue of the so-called coset construction known in the theory of
-valued groups, and construct
-valued quandles using
-multiquandles. In contrast to the case of
-valued groups, this construction turns out to be quite rich in algebraic and topological applications. We study the properties of
-corack bialgebras, which play a role similar to that of bialgebras in group theory.</description><identifier>ISSN: 0040-5779</identifier><identifier>EISSN: 1573-9333</identifier><identifier>DOI: 10.1134/S0040577924070031</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Applications of Mathematics ; Group theory ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical ; Topology</subject><ispartof>Theoretical and mathematical physics, 2024, Vol.220 (1), p.1080-1096</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><rights>Pleiades Publishing, Ltd. 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p711-35ad3c42ba2e6c799f78ff1e62a32b9d8f6174c00065f5fae183a6742cf01a593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0040577924070031$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0040577924070031$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bardakov, V. G.</creatorcontrib><creatorcontrib>Kozlovskaya, T. A.</creatorcontrib><creatorcontrib>Talalaev, D. V.</creatorcontrib><title>valued quandles and associated bialgebras</title><title>Theoretical and mathematical physics</title><addtitle>Theor Math Phys</addtitle><description>We study
-valued quandles and
-corack bialgebras. These structures are closely related to topological field theories in dimensions
and
, to the set-theoretic Yang–Baxter equation, and to the
-valued groups, which have attracted considerable attention or researchers. We elaborate the basic methods of this theory, find an analogue of the so-called coset construction known in the theory of
-valued groups, and construct
-valued quandles using
-multiquandles. In contrast to the case of
-valued groups, this construction turns out to be quite rich in algebraic and topological applications. We study the properties of
-corack bialgebras, which play a role similar to that of bialgebras in group theory.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Applications of Mathematics</subject><subject>Group theory</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><subject>Topology</subject><issn>0040-5779</issn><issn>1573-9333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNplkE9Lw0AUxBdRMFY_gLeAJw_R9_btn-xRilah4MHew0uyW1JCkmYbP78JFTx4Gpj5MQMjxD3CEyKp5y8ABdpaJxVYAMILkaC2lDkiuhTJEmdLfi1uYjwAIECOiXj85nbydXqcuKtbH9NZUo6xrxo-zX7ZcLv35cjxVlwFbqO_-9WV2L297tbv2fZz87F-2WaDRcxIc02VkiVLbyrrXLB5COiNZJKlq_Ng0KoKAIwOOrDHnNhYJasAyNrRSjyca4exP04-nopDP43dvFgQ5FpKA2RmSp6pOIxNt_fjH4VQLI8U_x6hH8pSUX4</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bardakov, V. G.</creator><creator>Kozlovskaya, T. A.</creator><creator>Talalaev, D. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2024</creationdate><title>valued quandles and associated bialgebras</title><author>Bardakov, V. G. ; Kozlovskaya, T. A. ; Talalaev, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p711-35ad3c42ba2e6c799f78ff1e62a32b9d8f6174c00065f5fae183a6742cf01a593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Applications of Mathematics</topic><topic>Group theory</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bardakov, V. G.</creatorcontrib><creatorcontrib>Kozlovskaya, T. A.</creatorcontrib><creatorcontrib>Talalaev, D. V.</creatorcontrib><jtitle>Theoretical and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bardakov, V. G.</au><au>Kozlovskaya, T. A.</au><au>Talalaev, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>valued quandles and associated bialgebras</atitle><jtitle>Theoretical and mathematical physics</jtitle><stitle>Theor Math Phys</stitle><date>2024</date><risdate>2024</risdate><volume>220</volume><issue>1</issue><spage>1080</spage><epage>1096</epage><pages>1080-1096</pages><issn>0040-5779</issn><eissn>1573-9333</eissn><abstract>We study
-valued quandles and
-corack bialgebras. These structures are closely related to topological field theories in dimensions
and
, to the set-theoretic Yang–Baxter equation, and to the
-valued groups, which have attracted considerable attention or researchers. We elaborate the basic methods of this theory, find an analogue of the so-called coset construction known in the theory of
-valued groups, and construct
-valued quandles using
-multiquandles. In contrast to the case of
-valued groups, this construction turns out to be quite rich in algebraic and topological applications. We study the properties of
-corack bialgebras, which play a role similar to that of bialgebras in group theory.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0040577924070031</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5779 |
ispartof | Theoretical and mathematical physics, 2024, Vol.220 (1), p.1080-1096 |
issn | 0040-5779 1573-9333 |
language | eng |
recordid | cdi_proquest_journals_3085226036 |
source | SpringerLink Journals |
subjects | 14/34 639/766/189 639/766/530 639/766/747 Applications of Mathematics Group theory Mathematical and Computational Physics Physics Physics and Astronomy Theoretical Topology |
title | valued quandles and associated bialgebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=valued%20quandles%20and%20associated%20bialgebras&rft.jtitle=Theoretical%20and%20mathematical%20physics&rft.au=Bardakov,%20V.%20G.&rft.date=2024&rft.volume=220&rft.issue=1&rft.spage=1080&rft.epage=1096&rft.pages=1080-1096&rft.issn=0040-5779&rft.eissn=1573-9333&rft_id=info:doi/10.1134/S0040577924070031&rft_dat=%3Cproquest_sprin%3E3085226036%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085226036&rft_id=info:pmid/&rfr_iscdi=true |