Studying the linkage patterns and incremental evolution of domain knowledge structure: a perspective of structure deconstruction

The knowledge structure is the result of continuous evolution of the forces intertwined with knowledge linkages and structural patterns. However, the dynamics along this path are still not fully understood. This study aims to investigate the linkage patterns and incremental evolution of domain knowl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientometrics 2024-07, Vol.129 (7), p.4249-4274
Hauptverfasser: Wang, Qi, Zou, Bentao, Jin, Jialin, Wang, Yuefen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4274
container_issue 7
container_start_page 4249
container_title Scientometrics
container_volume 129
creator Wang, Qi
Zou, Bentao
Jin, Jialin
Wang, Yuefen
description The knowledge structure is the result of continuous evolution of the forces intertwined with knowledge linkages and structural patterns. However, the dynamics along this path are still not fully understood. This study aims to investigate the linkage patterns and incremental evolution of domain knowledge structure from the perspective of structure deconstruction. To this end, we proposed a novel framework that integrates the incremental update mechanism of knowledge network construction, subgraph enumeration, and knowledge combination. The proposed integrative framework enables us to embed time-related node attributes into identified subgraphs and to deconstruct specific types of decomposable structure into exiting knowledge combinations and potential knowledge combinations. Results from our case studies, the IIoT and the Metaverse fields, confirmed that the proposed framework is applicable to reveal the underlying knowledge linkage patterns and relative evolution strength. The identified decomposable structures suggest that the path toward knowledge linkages mainly follows a mixed strategy (e.g., high impact knowledge elements are more likely to be linked with elements of middle/low level of impact). The framework designed in this study, together with findings from two fields, elucidates specific evolutionary dynamics through a combined analysis of motifs and structural deconstruction. These findings hold implications for practitioners and policymakers seeking to develop a nuanced understanding of the field.
doi_str_mv 10.1007/s11192-024-05059-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3085103638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085103638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-e0a15f6fa4c8fcbe1595cdcd84d366f9d13cdad20a57a74203dbd8b2fd4653d33</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6wssQ6M4zh12KGKl1SJBbC2XHtSUlI72E5Rd3w6KUGwYzUazbl3pEPIGYMLBjC9jIyxKs8gLzIQIKqM75EJE1JmuSzZPpkA4zKrGIdDchTjCoYQBzkhn0-pt9vGLWl6Rdo27k0vkXY6JQwuUu0sbZwJuEaXdEtx49s-Nd5RX1Pr17px9M35jxbtEIsp9Cb1Aa-oph2G2KFJzQZ38O-NWjTejetQdEIOat1GPP2Zx-Tl9uZ5dp_NH-8eZtfzzOQAKUPQTNRlrQsja7NAJiphrLGysLws68oybqy2OWgx1dMiB24XVi7y2hal4JbzY3I-9nbBv_cYk1r5PrjhpRpECAa85HKg8pEywccYsFZdaNY6bBUDtTOtRtNqMK2-TatdNR9DcYDdEsNf9T-pL95IhYc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085103638</pqid></control><display><type>article</type><title>Studying the linkage patterns and incremental evolution of domain knowledge structure: a perspective of structure deconstruction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Qi ; Zou, Bentao ; Jin, Jialin ; Wang, Yuefen</creator><creatorcontrib>Wang, Qi ; Zou, Bentao ; Jin, Jialin ; Wang, Yuefen</creatorcontrib><description>The knowledge structure is the result of continuous evolution of the forces intertwined with knowledge linkages and structural patterns. However, the dynamics along this path are still not fully understood. This study aims to investigate the linkage patterns and incremental evolution of domain knowledge structure from the perspective of structure deconstruction. To this end, we proposed a novel framework that integrates the incremental update mechanism of knowledge network construction, subgraph enumeration, and knowledge combination. The proposed integrative framework enables us to embed time-related node attributes into identified subgraphs and to deconstruct specific types of decomposable structure into exiting knowledge combinations and potential knowledge combinations. Results from our case studies, the IIoT and the Metaverse fields, confirmed that the proposed framework is applicable to reveal the underlying knowledge linkage patterns and relative evolution strength. The identified decomposable structures suggest that the path toward knowledge linkages mainly follows a mixed strategy (e.g., high impact knowledge elements are more likely to be linked with elements of middle/low level of impact). The framework designed in this study, together with findings from two fields, elucidates specific evolutionary dynamics through a combined analysis of motifs and structural deconstruction. These findings hold implications for practitioners and policymakers seeking to develop a nuanced understanding of the field.</description><identifier>ISSN: 0138-9130</identifier><identifier>EISSN: 1588-2861</identifier><identifier>DOI: 10.1007/s11192-024-05059-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Computer Science ; Decomposition ; Dynamic structural analysis ; Enumeration ; Evolution ; Graph theory ; Impact analysis ; Information Storage and Retrieval ; Knowledge ; Library Science ; Linkages ; Low level</subject><ispartof>Scientometrics, 2024-07, Vol.129 (7), p.4249-4274</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-e0a15f6fa4c8fcbe1595cdcd84d366f9d13cdad20a57a74203dbd8b2fd4653d33</cites><orcidid>0000-0002-7143-7766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11192-024-05059-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11192-024-05059-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Zou, Bentao</creatorcontrib><creatorcontrib>Jin, Jialin</creatorcontrib><creatorcontrib>Wang, Yuefen</creatorcontrib><title>Studying the linkage patterns and incremental evolution of domain knowledge structure: a perspective of structure deconstruction</title><title>Scientometrics</title><addtitle>Scientometrics</addtitle><description>The knowledge structure is the result of continuous evolution of the forces intertwined with knowledge linkages and structural patterns. However, the dynamics along this path are still not fully understood. This study aims to investigate the linkage patterns and incremental evolution of domain knowledge structure from the perspective of structure deconstruction. To this end, we proposed a novel framework that integrates the incremental update mechanism of knowledge network construction, subgraph enumeration, and knowledge combination. The proposed integrative framework enables us to embed time-related node attributes into identified subgraphs and to deconstruct specific types of decomposable structure into exiting knowledge combinations and potential knowledge combinations. Results from our case studies, the IIoT and the Metaverse fields, confirmed that the proposed framework is applicable to reveal the underlying knowledge linkage patterns and relative evolution strength. The identified decomposable structures suggest that the path toward knowledge linkages mainly follows a mixed strategy (e.g., high impact knowledge elements are more likely to be linked with elements of middle/low level of impact). The framework designed in this study, together with findings from two fields, elucidates specific evolutionary dynamics through a combined analysis of motifs and structural deconstruction. These findings hold implications for practitioners and policymakers seeking to develop a nuanced understanding of the field.</description><subject>Computer Science</subject><subject>Decomposition</subject><subject>Dynamic structural analysis</subject><subject>Enumeration</subject><subject>Evolution</subject><subject>Graph theory</subject><subject>Impact analysis</subject><subject>Information Storage and Retrieval</subject><subject>Knowledge</subject><subject>Library Science</subject><subject>Linkages</subject><subject>Low level</subject><issn>0138-9130</issn><issn>1588-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxA6wssQ6M4zh12KGKl1SJBbC2XHtSUlI72E5Rd3w6KUGwYzUazbl3pEPIGYMLBjC9jIyxKs8gLzIQIKqM75EJE1JmuSzZPpkA4zKrGIdDchTjCoYQBzkhn0-pt9vGLWl6Rdo27k0vkXY6JQwuUu0sbZwJuEaXdEtx49s-Nd5RX1Pr17px9M35jxbtEIsp9Cb1Aa-oph2G2KFJzQZ38O-NWjTejetQdEIOat1GPP2Zx-Tl9uZ5dp_NH-8eZtfzzOQAKUPQTNRlrQsja7NAJiphrLGysLws68oybqy2OWgx1dMiB24XVi7y2hal4JbzY3I-9nbBv_cYk1r5PrjhpRpECAa85HKg8pEywccYsFZdaNY6bBUDtTOtRtNqMK2-TatdNR9DcYDdEsNf9T-pL95IhYc</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Wang, Qi</creator><creator>Zou, Bentao</creator><creator>Jin, Jialin</creator><creator>Wang, Yuefen</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><orcidid>https://orcid.org/0000-0002-7143-7766</orcidid></search><sort><creationdate>20240701</creationdate><title>Studying the linkage patterns and incremental evolution of domain knowledge structure: a perspective of structure deconstruction</title><author>Wang, Qi ; Zou, Bentao ; Jin, Jialin ; Wang, Yuefen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-e0a15f6fa4c8fcbe1595cdcd84d366f9d13cdad20a57a74203dbd8b2fd4653d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Science</topic><topic>Decomposition</topic><topic>Dynamic structural analysis</topic><topic>Enumeration</topic><topic>Evolution</topic><topic>Graph theory</topic><topic>Impact analysis</topic><topic>Information Storage and Retrieval</topic><topic>Knowledge</topic><topic>Library Science</topic><topic>Linkages</topic><topic>Low level</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Zou, Bentao</creatorcontrib><creatorcontrib>Jin, Jialin</creatorcontrib><creatorcontrib>Wang, Yuefen</creatorcontrib><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Scientometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qi</au><au>Zou, Bentao</au><au>Jin, Jialin</au><au>Wang, Yuefen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studying the linkage patterns and incremental evolution of domain knowledge structure: a perspective of structure deconstruction</atitle><jtitle>Scientometrics</jtitle><stitle>Scientometrics</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>129</volume><issue>7</issue><spage>4249</spage><epage>4274</epage><pages>4249-4274</pages><issn>0138-9130</issn><eissn>1588-2861</eissn><abstract>The knowledge structure is the result of continuous evolution of the forces intertwined with knowledge linkages and structural patterns. However, the dynamics along this path are still not fully understood. This study aims to investigate the linkage patterns and incremental evolution of domain knowledge structure from the perspective of structure deconstruction. To this end, we proposed a novel framework that integrates the incremental update mechanism of knowledge network construction, subgraph enumeration, and knowledge combination. The proposed integrative framework enables us to embed time-related node attributes into identified subgraphs and to deconstruct specific types of decomposable structure into exiting knowledge combinations and potential knowledge combinations. Results from our case studies, the IIoT and the Metaverse fields, confirmed that the proposed framework is applicable to reveal the underlying knowledge linkage patterns and relative evolution strength. The identified decomposable structures suggest that the path toward knowledge linkages mainly follows a mixed strategy (e.g., high impact knowledge elements are more likely to be linked with elements of middle/low level of impact). The framework designed in this study, together with findings from two fields, elucidates specific evolutionary dynamics through a combined analysis of motifs and structural deconstruction. These findings hold implications for practitioners and policymakers seeking to develop a nuanced understanding of the field.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11192-024-05059-3</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-7143-7766</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0138-9130
ispartof Scientometrics, 2024-07, Vol.129 (7), p.4249-4274
issn 0138-9130
1588-2861
language eng
recordid cdi_proquest_journals_3085103638
source SpringerLink Journals - AutoHoldings
subjects Computer Science
Decomposition
Dynamic structural analysis
Enumeration
Evolution
Graph theory
Impact analysis
Information Storage and Retrieval
Knowledge
Library Science
Linkages
Low level
title Studying the linkage patterns and incremental evolution of domain knowledge structure: a perspective of structure deconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studying%20the%20linkage%20patterns%20and%20incremental%20evolution%20of%20domain%20knowledge%20structure:%20a%20perspective%20of%20structure%20deconstruction&rft.jtitle=Scientometrics&rft.au=Wang,%20Qi&rft.date=2024-07-01&rft.volume=129&rft.issue=7&rft.spage=4249&rft.epage=4274&rft.pages=4249-4274&rft.issn=0138-9130&rft.eissn=1588-2861&rft_id=info:doi/10.1007/s11192-024-05059-3&rft_dat=%3Cproquest_cross%3E3085103638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085103638&rft_id=info:pmid/&rfr_iscdi=true