Studying the linkage patterns and incremental evolution of domain knowledge structure: a perspective of structure deconstruction
The knowledge structure is the result of continuous evolution of the forces intertwined with knowledge linkages and structural patterns. However, the dynamics along this path are still not fully understood. This study aims to investigate the linkage patterns and incremental evolution of domain knowl...
Gespeichert in:
Veröffentlicht in: | Scientometrics 2024-07, Vol.129 (7), p.4249-4274 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4274 |
---|---|
container_issue | 7 |
container_start_page | 4249 |
container_title | Scientometrics |
container_volume | 129 |
creator | Wang, Qi Zou, Bentao Jin, Jialin Wang, Yuefen |
description | The knowledge structure is the result of continuous evolution of the forces intertwined with knowledge linkages and structural patterns. However, the dynamics along this path are still not fully understood. This study aims to investigate the linkage patterns and incremental evolution of domain knowledge structure from the perspective of structure deconstruction. To this end, we proposed a novel framework that integrates the incremental update mechanism of knowledge network construction, subgraph enumeration, and knowledge combination. The proposed integrative framework enables us to embed time-related node attributes into identified subgraphs and to deconstruct specific types of decomposable structure into exiting knowledge combinations and potential knowledge combinations. Results from our case studies, the IIoT and the Metaverse fields, confirmed that the proposed framework is applicable to reveal the underlying knowledge linkage patterns and relative evolution strength. The identified decomposable structures suggest that the path toward knowledge linkages mainly follows a mixed strategy (e.g., high impact knowledge elements are more likely to be linked with elements of middle/low level of impact). The framework designed in this study, together with findings from two fields, elucidates specific evolutionary dynamics through a combined analysis of motifs and structural deconstruction. These findings hold implications for practitioners and policymakers seeking to develop a nuanced understanding of the field. |
doi_str_mv | 10.1007/s11192-024-05059-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3085103638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085103638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-e0a15f6fa4c8fcbe1595cdcd84d366f9d13cdad20a57a74203dbd8b2fd4653d33</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6wssQ6M4zh12KGKl1SJBbC2XHtSUlI72E5Rd3w6KUGwYzUazbl3pEPIGYMLBjC9jIyxKs8gLzIQIKqM75EJE1JmuSzZPpkA4zKrGIdDchTjCoYQBzkhn0-pt9vGLWl6Rdo27k0vkXY6JQwuUu0sbZwJuEaXdEtx49s-Nd5RX1Pr17px9M35jxbtEIsp9Cb1Aa-oph2G2KFJzQZ38O-NWjTejetQdEIOat1GPP2Zx-Tl9uZ5dp_NH-8eZtfzzOQAKUPQTNRlrQsja7NAJiphrLGysLws68oybqy2OWgx1dMiB24XVi7y2hal4JbzY3I-9nbBv_cYk1r5PrjhpRpECAa85HKg8pEywccYsFZdaNY6bBUDtTOtRtNqMK2-TatdNR9DcYDdEsNf9T-pL95IhYc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085103638</pqid></control><display><type>article</type><title>Studying the linkage patterns and incremental evolution of domain knowledge structure: a perspective of structure deconstruction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Qi ; Zou, Bentao ; Jin, Jialin ; Wang, Yuefen</creator><creatorcontrib>Wang, Qi ; Zou, Bentao ; Jin, Jialin ; Wang, Yuefen</creatorcontrib><description>The knowledge structure is the result of continuous evolution of the forces intertwined with knowledge linkages and structural patterns. However, the dynamics along this path are still not fully understood. This study aims to investigate the linkage patterns and incremental evolution of domain knowledge structure from the perspective of structure deconstruction. To this end, we proposed a novel framework that integrates the incremental update mechanism of knowledge network construction, subgraph enumeration, and knowledge combination. The proposed integrative framework enables us to embed time-related node attributes into identified subgraphs and to deconstruct specific types of decomposable structure into exiting knowledge combinations and potential knowledge combinations. Results from our case studies, the IIoT and the Metaverse fields, confirmed that the proposed framework is applicable to reveal the underlying knowledge linkage patterns and relative evolution strength. The identified decomposable structures suggest that the path toward knowledge linkages mainly follows a mixed strategy (e.g., high impact knowledge elements are more likely to be linked with elements of middle/low level of impact). The framework designed in this study, together with findings from two fields, elucidates specific evolutionary dynamics through a combined analysis of motifs and structural deconstruction. These findings hold implications for practitioners and policymakers seeking to develop a nuanced understanding of the field.</description><identifier>ISSN: 0138-9130</identifier><identifier>EISSN: 1588-2861</identifier><identifier>DOI: 10.1007/s11192-024-05059-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Computer Science ; Decomposition ; Dynamic structural analysis ; Enumeration ; Evolution ; Graph theory ; Impact analysis ; Information Storage and Retrieval ; Knowledge ; Library Science ; Linkages ; Low level</subject><ispartof>Scientometrics, 2024-07, Vol.129 (7), p.4249-4274</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-e0a15f6fa4c8fcbe1595cdcd84d366f9d13cdad20a57a74203dbd8b2fd4653d33</cites><orcidid>0000-0002-7143-7766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11192-024-05059-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11192-024-05059-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Zou, Bentao</creatorcontrib><creatorcontrib>Jin, Jialin</creatorcontrib><creatorcontrib>Wang, Yuefen</creatorcontrib><title>Studying the linkage patterns and incremental evolution of domain knowledge structure: a perspective of structure deconstruction</title><title>Scientometrics</title><addtitle>Scientometrics</addtitle><description>The knowledge structure is the result of continuous evolution of the forces intertwined with knowledge linkages and structural patterns. However, the dynamics along this path are still not fully understood. This study aims to investigate the linkage patterns and incremental evolution of domain knowledge structure from the perspective of structure deconstruction. To this end, we proposed a novel framework that integrates the incremental update mechanism of knowledge network construction, subgraph enumeration, and knowledge combination. The proposed integrative framework enables us to embed time-related node attributes into identified subgraphs and to deconstruct specific types of decomposable structure into exiting knowledge combinations and potential knowledge combinations. Results from our case studies, the IIoT and the Metaverse fields, confirmed that the proposed framework is applicable to reveal the underlying knowledge linkage patterns and relative evolution strength. The identified decomposable structures suggest that the path toward knowledge linkages mainly follows a mixed strategy (e.g., high impact knowledge elements are more likely to be linked with elements of middle/low level of impact). The framework designed in this study, together with findings from two fields, elucidates specific evolutionary dynamics through a combined analysis of motifs and structural deconstruction. These findings hold implications for practitioners and policymakers seeking to develop a nuanced understanding of the field.</description><subject>Computer Science</subject><subject>Decomposition</subject><subject>Dynamic structural analysis</subject><subject>Enumeration</subject><subject>Evolution</subject><subject>Graph theory</subject><subject>Impact analysis</subject><subject>Information Storage and Retrieval</subject><subject>Knowledge</subject><subject>Library Science</subject><subject>Linkages</subject><subject>Low level</subject><issn>0138-9130</issn><issn>1588-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxA6wssQ6M4zh12KGKl1SJBbC2XHtSUlI72E5Rd3w6KUGwYzUazbl3pEPIGYMLBjC9jIyxKs8gLzIQIKqM75EJE1JmuSzZPpkA4zKrGIdDchTjCoYQBzkhn0-pt9vGLWl6Rdo27k0vkXY6JQwuUu0sbZwJuEaXdEtx49s-Nd5RX1Pr17px9M35jxbtEIsp9Cb1Aa-oph2G2KFJzQZ38O-NWjTejetQdEIOat1GPP2Zx-Tl9uZ5dp_NH-8eZtfzzOQAKUPQTNRlrQsja7NAJiphrLGysLws68oybqy2OWgx1dMiB24XVi7y2hal4JbzY3I-9nbBv_cYk1r5PrjhpRpECAa85HKg8pEywccYsFZdaNY6bBUDtTOtRtNqMK2-TatdNR9DcYDdEsNf9T-pL95IhYc</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Wang, Qi</creator><creator>Zou, Bentao</creator><creator>Jin, Jialin</creator><creator>Wang, Yuefen</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><orcidid>https://orcid.org/0000-0002-7143-7766</orcidid></search><sort><creationdate>20240701</creationdate><title>Studying the linkage patterns and incremental evolution of domain knowledge structure: a perspective of structure deconstruction</title><author>Wang, Qi ; Zou, Bentao ; Jin, Jialin ; Wang, Yuefen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-e0a15f6fa4c8fcbe1595cdcd84d366f9d13cdad20a57a74203dbd8b2fd4653d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Science</topic><topic>Decomposition</topic><topic>Dynamic structural analysis</topic><topic>Enumeration</topic><topic>Evolution</topic><topic>Graph theory</topic><topic>Impact analysis</topic><topic>Information Storage and Retrieval</topic><topic>Knowledge</topic><topic>Library Science</topic><topic>Linkages</topic><topic>Low level</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Zou, Bentao</creatorcontrib><creatorcontrib>Jin, Jialin</creatorcontrib><creatorcontrib>Wang, Yuefen</creatorcontrib><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Scientometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qi</au><au>Zou, Bentao</au><au>Jin, Jialin</au><au>Wang, Yuefen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studying the linkage patterns and incremental evolution of domain knowledge structure: a perspective of structure deconstruction</atitle><jtitle>Scientometrics</jtitle><stitle>Scientometrics</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>129</volume><issue>7</issue><spage>4249</spage><epage>4274</epage><pages>4249-4274</pages><issn>0138-9130</issn><eissn>1588-2861</eissn><abstract>The knowledge structure is the result of continuous evolution of the forces intertwined with knowledge linkages and structural patterns. However, the dynamics along this path are still not fully understood. This study aims to investigate the linkage patterns and incremental evolution of domain knowledge structure from the perspective of structure deconstruction. To this end, we proposed a novel framework that integrates the incremental update mechanism of knowledge network construction, subgraph enumeration, and knowledge combination. The proposed integrative framework enables us to embed time-related node attributes into identified subgraphs and to deconstruct specific types of decomposable structure into exiting knowledge combinations and potential knowledge combinations. Results from our case studies, the IIoT and the Metaverse fields, confirmed that the proposed framework is applicable to reveal the underlying knowledge linkage patterns and relative evolution strength. The identified decomposable structures suggest that the path toward knowledge linkages mainly follows a mixed strategy (e.g., high impact knowledge elements are more likely to be linked with elements of middle/low level of impact). The framework designed in this study, together with findings from two fields, elucidates specific evolutionary dynamics through a combined analysis of motifs and structural deconstruction. These findings hold implications for practitioners and policymakers seeking to develop a nuanced understanding of the field.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11192-024-05059-3</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-7143-7766</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0138-9130 |
ispartof | Scientometrics, 2024-07, Vol.129 (7), p.4249-4274 |
issn | 0138-9130 1588-2861 |
language | eng |
recordid | cdi_proquest_journals_3085103638 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computer Science Decomposition Dynamic structural analysis Enumeration Evolution Graph theory Impact analysis Information Storage and Retrieval Knowledge Library Science Linkages Low level |
title | Studying the linkage patterns and incremental evolution of domain knowledge structure: a perspective of structure deconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studying%20the%20linkage%20patterns%20and%20incremental%20evolution%20of%20domain%20knowledge%20structure:%20a%20perspective%20of%20structure%20deconstruction&rft.jtitle=Scientometrics&rft.au=Wang,%20Qi&rft.date=2024-07-01&rft.volume=129&rft.issue=7&rft.spage=4249&rft.epage=4274&rft.pages=4249-4274&rft.issn=0138-9130&rft.eissn=1588-2861&rft_id=info:doi/10.1007/s11192-024-05059-3&rft_dat=%3Cproquest_cross%3E3085103638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085103638&rft_id=info:pmid/&rfr_iscdi=true |