Application of Principal Component Analysis for the Elucidation of Operational Features for Pervaporation Desalination Performance of PVA-Based TFC Membrane
Principal Component Analysis (PCA) serves as a valuable tool for analyzing membrane processes, offering insights into complex datasets, identifying crucial factors influencing membrane performance, aiding in design and optimization, and facilitating monitoring and fault diagnosis. In this study, PCA...
Gespeichert in:
Veröffentlicht in: | Processes 2024-07, Vol.12 (7), p.1502 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 1502 |
container_title | Processes |
container_volume | 12 |
creator | Chaouk, Hamdi Obeid, Emil Halwani, Jalal Arayro, Jack Mezher, Rabih Amine, Semaan Gazo Hanna, Eddie Mouhtady, Omar Younes, Khaled |
description | Principal Component Analysis (PCA) serves as a valuable tool for analyzing membrane processes, offering insights into complex datasets, identifying crucial factors influencing membrane performance, aiding in design and optimization, and facilitating monitoring and fault diagnosis. In this study, PCA is applied to understand operational features affecting pervaporation desalination performance of PVA-based TFC membranes. PCA-biplot representation reveals that the first two principal components (PCs) accounted for 62.34% of the total variance, with normalized permeation with selective layer thickness (Pnorm), water permeation flux (P), and operational temperature (T) contributing significantly to PC1, while salt rejection dominates PC2. Membrane clustering indicates distinct influences, with membranes grouped based on correlation with operational factors. Excluding outliers increases total variance to 74.15%, showing altered membrane arrangements. Interestingly, the adopted strategy showed a high discrepancy between P and Pnorm, indicating the relevance of comparing between PVA membranes with specific layers and those with none. PCA results showed that Pnorm is more important than P in operational features, highlighting its significance in both research and practical applications. Our findings show that even know P remains a key performance property; Pnorm is critical for developing high-performance, efficient, and economically viable pervaporation desalination membranes. Subsequent PCA for membranes without specific layers (M1 to M6) and with specific layers (M7 to M11) highlights higher total variance and influence of variables, aiding in understanding membranes’ behavior and suitability under different conditions. Overall, PCA effectively delineates performance characteristics and potential applications of PVA-based TFC membranes. This study would confirm the applicability of the PCA approach in monitoring the operational efficiency of pervaporation desalination via these membranes. |
doi_str_mv | 10.3390/pr12071502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3085027995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085027995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-22d5669306a057d428ff51f98d9b1bd7f5558182f29740b1e09d4336e438de3f3</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBITGMXfkEkbkiFfDRNcyxlA6Sh7TC4VmnriE5tE5IWaf-FH0tZEeCL_fSebdkvCC4JvmFM4lvrCMWCcExPghmlVIRSEHH6rz4PFt7v8RiSsITHs-AztbapS9XXpkNGo62ru7K2qkGZaa3poOtR2qnm4GuPtHGofwO0bIayrn57NhbcEYxdK1D94GDSbsF9KGsmEt2DV03dTWCkRkWruhKOa1_T8E55qNBulaFnaAunOrgIzrRqPCx-8jx4WS132WO43jw8Zek6LEmU9CGlFY9jyXCsMBdVRBOtOdEyqWRBikpoznlCEqqpFBEuCGBZRYzFELGkAqbZPLia5lpn3gfwfb43gxvP8TnDyfhPISUfVdeTqnTGewc6t65ulTvkBOffBuR_BrAvhdl5bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085027995</pqid></control><display><type>article</type><title>Application of Principal Component Analysis for the Elucidation of Operational Features for Pervaporation Desalination Performance of PVA-Based TFC Membrane</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chaouk, Hamdi ; Obeid, Emil ; Halwani, Jalal ; Arayro, Jack ; Mezher, Rabih ; Amine, Semaan ; Gazo Hanna, Eddie ; Mouhtady, Omar ; Younes, Khaled</creator><creatorcontrib>Chaouk, Hamdi ; Obeid, Emil ; Halwani, Jalal ; Arayro, Jack ; Mezher, Rabih ; Amine, Semaan ; Gazo Hanna, Eddie ; Mouhtady, Omar ; Younes, Khaled</creatorcontrib><description>Principal Component Analysis (PCA) serves as a valuable tool for analyzing membrane processes, offering insights into complex datasets, identifying crucial factors influencing membrane performance, aiding in design and optimization, and facilitating monitoring and fault diagnosis. In this study, PCA is applied to understand operational features affecting pervaporation desalination performance of PVA-based TFC membranes. PCA-biplot representation reveals that the first two principal components (PCs) accounted for 62.34% of the total variance, with normalized permeation with selective layer thickness (Pnorm), water permeation flux (P), and operational temperature (T) contributing significantly to PC1, while salt rejection dominates PC2. Membrane clustering indicates distinct influences, with membranes grouped based on correlation with operational factors. Excluding outliers increases total variance to 74.15%, showing altered membrane arrangements. Interestingly, the adopted strategy showed a high discrepancy between P and Pnorm, indicating the relevance of comparing between PVA membranes with specific layers and those with none. PCA results showed that Pnorm is more important than P in operational features, highlighting its significance in both research and practical applications. Our findings show that even know P remains a key performance property; Pnorm is critical for developing high-performance, efficient, and economically viable pervaporation desalination membranes. Subsequent PCA for membranes without specific layers (M1 to M6) and with specific layers (M7 to M11) highlights higher total variance and influence of variables, aiding in understanding membranes’ behavior and suitability under different conditions. Overall, PCA effectively delineates performance characteristics and potential applications of PVA-based TFC membranes. This study would confirm the applicability of the PCA approach in monitoring the operational efficiency of pervaporation desalination via these membranes.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12071502</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acids ; Additives ; Business metrics ; Clustering ; Desalination ; Design factors ; Design optimization ; Efficiency ; Fault diagnosis ; Membrane processes ; Membranes ; Monitoring ; Nanoparticles ; Optimization ; Outliers (statistics) ; Permeation ; Pervaporation ; Polyvinyl alcohol ; Principal components analysis ; Temperature ; Thickness ; Variance ; Water transportation</subject><ispartof>Processes, 2024-07, Vol.12 (7), p.1502</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-22d5669306a057d428ff51f98d9b1bd7f5558182f29740b1e09d4336e438de3f3</cites><orcidid>0000-0001-9049-2309 ; 0000-0001-8502-2337 ; 0000-0003-0966-2433 ; 0000-0003-0264-7687 ; 0000-0002-0061-6441 ; 0000-0002-9693-0004 ; 0000-0002-0171-4668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chaouk, Hamdi</creatorcontrib><creatorcontrib>Obeid, Emil</creatorcontrib><creatorcontrib>Halwani, Jalal</creatorcontrib><creatorcontrib>Arayro, Jack</creatorcontrib><creatorcontrib>Mezher, Rabih</creatorcontrib><creatorcontrib>Amine, Semaan</creatorcontrib><creatorcontrib>Gazo Hanna, Eddie</creatorcontrib><creatorcontrib>Mouhtady, Omar</creatorcontrib><creatorcontrib>Younes, Khaled</creatorcontrib><title>Application of Principal Component Analysis for the Elucidation of Operational Features for Pervaporation Desalination Performance of PVA-Based TFC Membrane</title><title>Processes</title><description>Principal Component Analysis (PCA) serves as a valuable tool for analyzing membrane processes, offering insights into complex datasets, identifying crucial factors influencing membrane performance, aiding in design and optimization, and facilitating monitoring and fault diagnosis. In this study, PCA is applied to understand operational features affecting pervaporation desalination performance of PVA-based TFC membranes. PCA-biplot representation reveals that the first two principal components (PCs) accounted for 62.34% of the total variance, with normalized permeation with selective layer thickness (Pnorm), water permeation flux (P), and operational temperature (T) contributing significantly to PC1, while salt rejection dominates PC2. Membrane clustering indicates distinct influences, with membranes grouped based on correlation with operational factors. Excluding outliers increases total variance to 74.15%, showing altered membrane arrangements. Interestingly, the adopted strategy showed a high discrepancy between P and Pnorm, indicating the relevance of comparing between PVA membranes with specific layers and those with none. PCA results showed that Pnorm is more important than P in operational features, highlighting its significance in both research and practical applications. Our findings show that even know P remains a key performance property; Pnorm is critical for developing high-performance, efficient, and economically viable pervaporation desalination membranes. Subsequent PCA for membranes without specific layers (M1 to M6) and with specific layers (M7 to M11) highlights higher total variance and influence of variables, aiding in understanding membranes’ behavior and suitability under different conditions. Overall, PCA effectively delineates performance characteristics and potential applications of PVA-based TFC membranes. This study would confirm the applicability of the PCA approach in monitoring the operational efficiency of pervaporation desalination via these membranes.</description><subject>Acids</subject><subject>Additives</subject><subject>Business metrics</subject><subject>Clustering</subject><subject>Desalination</subject><subject>Design factors</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>Fault diagnosis</subject><subject>Membrane processes</subject><subject>Membranes</subject><subject>Monitoring</subject><subject>Nanoparticles</subject><subject>Optimization</subject><subject>Outliers (statistics)</subject><subject>Permeation</subject><subject>Pervaporation</subject><subject>Polyvinyl alcohol</subject><subject>Principal components analysis</subject><subject>Temperature</subject><subject>Thickness</subject><subject>Variance</subject><subject>Water transportation</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUU1PwzAMrRBITGMXfkEkbkiFfDRNcyxlA6Sh7TC4VmnriE5tE5IWaf-FH0tZEeCL_fSebdkvCC4JvmFM4lvrCMWCcExPghmlVIRSEHH6rz4PFt7v8RiSsITHs-AztbapS9XXpkNGo62ru7K2qkGZaa3poOtR2qnm4GuPtHGofwO0bIayrn57NhbcEYxdK1D94GDSbsF9KGsmEt2DV03dTWCkRkWruhKOa1_T8E55qNBulaFnaAunOrgIzrRqPCx-8jx4WS132WO43jw8Zek6LEmU9CGlFY9jyXCsMBdVRBOtOdEyqWRBikpoznlCEqqpFBEuCGBZRYzFELGkAqbZPLia5lpn3gfwfb43gxvP8TnDyfhPISUfVdeTqnTGewc6t65ulTvkBOffBuR_BrAvhdl5bQ</recordid><startdate>20240717</startdate><enddate>20240717</enddate><creator>Chaouk, Hamdi</creator><creator>Obeid, Emil</creator><creator>Halwani, Jalal</creator><creator>Arayro, Jack</creator><creator>Mezher, Rabih</creator><creator>Amine, Semaan</creator><creator>Gazo Hanna, Eddie</creator><creator>Mouhtady, Omar</creator><creator>Younes, Khaled</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9049-2309</orcidid><orcidid>https://orcid.org/0000-0001-8502-2337</orcidid><orcidid>https://orcid.org/0000-0003-0966-2433</orcidid><orcidid>https://orcid.org/0000-0003-0264-7687</orcidid><orcidid>https://orcid.org/0000-0002-0061-6441</orcidid><orcidid>https://orcid.org/0000-0002-9693-0004</orcidid><orcidid>https://orcid.org/0000-0002-0171-4668</orcidid></search><sort><creationdate>20240717</creationdate><title>Application of Principal Component Analysis for the Elucidation of Operational Features for Pervaporation Desalination Performance of PVA-Based TFC Membrane</title><author>Chaouk, Hamdi ; Obeid, Emil ; Halwani, Jalal ; Arayro, Jack ; Mezher, Rabih ; Amine, Semaan ; Gazo Hanna, Eddie ; Mouhtady, Omar ; Younes, Khaled</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-22d5669306a057d428ff51f98d9b1bd7f5558182f29740b1e09d4336e438de3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acids</topic><topic>Additives</topic><topic>Business metrics</topic><topic>Clustering</topic><topic>Desalination</topic><topic>Design factors</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>Fault diagnosis</topic><topic>Membrane processes</topic><topic>Membranes</topic><topic>Monitoring</topic><topic>Nanoparticles</topic><topic>Optimization</topic><topic>Outliers (statistics)</topic><topic>Permeation</topic><topic>Pervaporation</topic><topic>Polyvinyl alcohol</topic><topic>Principal components analysis</topic><topic>Temperature</topic><topic>Thickness</topic><topic>Variance</topic><topic>Water transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaouk, Hamdi</creatorcontrib><creatorcontrib>Obeid, Emil</creatorcontrib><creatorcontrib>Halwani, Jalal</creatorcontrib><creatorcontrib>Arayro, Jack</creatorcontrib><creatorcontrib>Mezher, Rabih</creatorcontrib><creatorcontrib>Amine, Semaan</creatorcontrib><creatorcontrib>Gazo Hanna, Eddie</creatorcontrib><creatorcontrib>Mouhtady, Omar</creatorcontrib><creatorcontrib>Younes, Khaled</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaouk, Hamdi</au><au>Obeid, Emil</au><au>Halwani, Jalal</au><au>Arayro, Jack</au><au>Mezher, Rabih</au><au>Amine, Semaan</au><au>Gazo Hanna, Eddie</au><au>Mouhtady, Omar</au><au>Younes, Khaled</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Principal Component Analysis for the Elucidation of Operational Features for Pervaporation Desalination Performance of PVA-Based TFC Membrane</atitle><jtitle>Processes</jtitle><date>2024-07-17</date><risdate>2024</risdate><volume>12</volume><issue>7</issue><spage>1502</spage><pages>1502-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Principal Component Analysis (PCA) serves as a valuable tool for analyzing membrane processes, offering insights into complex datasets, identifying crucial factors influencing membrane performance, aiding in design and optimization, and facilitating monitoring and fault diagnosis. In this study, PCA is applied to understand operational features affecting pervaporation desalination performance of PVA-based TFC membranes. PCA-biplot representation reveals that the first two principal components (PCs) accounted for 62.34% of the total variance, with normalized permeation with selective layer thickness (Pnorm), water permeation flux (P), and operational temperature (T) contributing significantly to PC1, while salt rejection dominates PC2. Membrane clustering indicates distinct influences, with membranes grouped based on correlation with operational factors. Excluding outliers increases total variance to 74.15%, showing altered membrane arrangements. Interestingly, the adopted strategy showed a high discrepancy between P and Pnorm, indicating the relevance of comparing between PVA membranes with specific layers and those with none. PCA results showed that Pnorm is more important than P in operational features, highlighting its significance in both research and practical applications. Our findings show that even know P remains a key performance property; Pnorm is critical for developing high-performance, efficient, and economically viable pervaporation desalination membranes. Subsequent PCA for membranes without specific layers (M1 to M6) and with specific layers (M7 to M11) highlights higher total variance and influence of variables, aiding in understanding membranes’ behavior and suitability under different conditions. Overall, PCA effectively delineates performance characteristics and potential applications of PVA-based TFC membranes. This study would confirm the applicability of the PCA approach in monitoring the operational efficiency of pervaporation desalination via these membranes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12071502</doi><orcidid>https://orcid.org/0000-0001-9049-2309</orcidid><orcidid>https://orcid.org/0000-0001-8502-2337</orcidid><orcidid>https://orcid.org/0000-0003-0966-2433</orcidid><orcidid>https://orcid.org/0000-0003-0264-7687</orcidid><orcidid>https://orcid.org/0000-0002-0061-6441</orcidid><orcidid>https://orcid.org/0000-0002-9693-0004</orcidid><orcidid>https://orcid.org/0000-0002-0171-4668</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2024-07, Vol.12 (7), p.1502 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_3085027995 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Acids Additives Business metrics Clustering Desalination Design factors Design optimization Efficiency Fault diagnosis Membrane processes Membranes Monitoring Nanoparticles Optimization Outliers (statistics) Permeation Pervaporation Polyvinyl alcohol Principal components analysis Temperature Thickness Variance Water transportation |
title | Application of Principal Component Analysis for the Elucidation of Operational Features for Pervaporation Desalination Performance of PVA-Based TFC Membrane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Principal%20Component%20Analysis%20for%20the%20Elucidation%20of%20Operational%20Features%20for%20Pervaporation%20Desalination%20Performance%20of%20PVA-Based%20TFC%20Membrane&rft.jtitle=Processes&rft.au=Chaouk,%20Hamdi&rft.date=2024-07-17&rft.volume=12&rft.issue=7&rft.spage=1502&rft.pages=1502-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12071502&rft_dat=%3Cproquest_cross%3E3085027995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085027995&rft_id=info:pmid/&rfr_iscdi=true |