In Situ Hydrophobization of Lithium Aluminate Particles for Flotations by Dry Grinding in the Presence of Punicines

The engineered artificial mineral (EnAM) lithium aluminate (LiAlO2) is a promising candidate for the recycling of lithium from slags, which can originate from the reprocessing of batteries, for example. Derivatives of the natural product Punicine (1-(2′,5′-dihydroxyphenyl)-pyridinium) from Punica gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2024-07, Vol.14 (7), p.650
Hauptverfasser: Steiner, Frédéric, Zgheib, Ali, Fischer, Maximilian Hans, Büttner, Lukas, Schmidt, Andreas, Breitung-Faes, Sandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 650
container_title Minerals (Basel)
container_volume 14
creator Steiner, Frédéric
Zgheib, Ali
Fischer, Maximilian Hans
Büttner, Lukas
Schmidt, Andreas
Breitung-Faes, Sandra
description The engineered artificial mineral (EnAM) lithium aluminate (LiAlO2) is a promising candidate for the recycling of lithium from slags, which can originate from the reprocessing of batteries, for example. Derivatives of the natural product Punicine (1-(2′,5′-dihydroxyphenyl)-pyridinium) from Punica granatum have been proven to be effective switchable collectors for the flotation of this mineral as they react to light. In the present study, three Punicines were added to a planetary ball mill before grinding LiAlO2 to particle sizes suitable for flotation. We investigated the influence of Punicine and two derivatives with C10 and C17 side chains on the grinding results at different grinding times and conditions as well as on the yields in flotations. SEM images of the particles, IR and ICP–OES measurements provided insights into the Punicine–particle interactions. They showed that Punicines not only prevent the formation of hydrophilic and thus undesirable lithium aluminate hydroxide hydrate (LiAl2(OH)7 ▪ x H2O) surfaces in this process, as is unavoidable in aqueous flotation without this pretreatment, they also prevent the undesired release of lithium cations into the aqueous phase. Due to considerable hydrophobization of the particle surface of LiAlO2, nearly quantitative recovery rates of this engineered artificial mineral are achieved using the process described here.
doi_str_mv 10.3390/min14070650
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3084984551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084984551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-769b79292a3c87f42dfe7cf98e22c98b92c6a5ff4988a867f0d89f7a008efcac3</originalsourceid><addsrcrecordid>eNpNkM1KAzEURoMoWGpXvkDApYxmkskkWZZqf6BgQQV3QyaT2JRpUpPMYnz6Tq2L3s29i_OdCx8A9zl6IkSg5711eYEYKim6AiOMGM3yknxdX9y3YBLjDg0jcsIpHoG4cvDdpg4u-yb4w9bX9lcm6x30Bq5t2tpuD6dtN8hl0nAjQ7Kq1REaH-C89ekPjrDu4Uvo4SJY11j3Da2DaTvwQUftlD7ZNp2zyjod78CNkW3Uk_89Bp_z14_ZMlu_LVaz6TpTmJYpY6WomcACS6I4MwVujGbKCK4xVoLXAqtSUmMKwbnkJTOo4cIwiRDXRklFxuDh7D0E_9PpmKqd74IbXlYE8SFWUJoP1OOZUsHHGLSpDsHuZeirHFWnYquLYskRIu5suA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084984551</pqid></control><display><type>article</type><title>In Situ Hydrophobization of Lithium Aluminate Particles for Flotations by Dry Grinding in the Presence of Punicines</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Steiner, Frédéric ; Zgheib, Ali ; Fischer, Maximilian Hans ; Büttner, Lukas ; Schmidt, Andreas ; Breitung-Faes, Sandra</creator><creatorcontrib>Steiner, Frédéric ; Zgheib, Ali ; Fischer, Maximilian Hans ; Büttner, Lukas ; Schmidt, Andreas ; Breitung-Faes, Sandra</creatorcontrib><description>The engineered artificial mineral (EnAM) lithium aluminate (LiAlO2) is a promising candidate for the recycling of lithium from slags, which can originate from the reprocessing of batteries, for example. Derivatives of the natural product Punicine (1-(2′,5′-dihydroxyphenyl)-pyridinium) from Punica granatum have been proven to be effective switchable collectors for the flotation of this mineral as they react to light. In the present study, three Punicines were added to a planetary ball mill before grinding LiAlO2 to particle sizes suitable for flotation. We investigated the influence of Punicine and two derivatives with C10 and C17 side chains on the grinding results at different grinding times and conditions as well as on the yields in flotations. SEM images of the particles, IR and ICP–OES measurements provided insights into the Punicine–particle interactions. They showed that Punicines not only prevent the formation of hydrophilic and thus undesirable lithium aluminate hydroxide hydrate (LiAl2(OH)7 ▪ x H2O) surfaces in this process, as is unavoidable in aqueous flotation without this pretreatment, they also prevent the undesired release of lithium cations into the aqueous phase. Due to considerable hydrophobization of the particle surface of LiAlO2, nearly quantitative recovery rates of this engineered artificial mineral are achieved using the process described here.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min14070650</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum ; Batteries ; Cations ; Dry grinding ; Flotation ; Hydrates ; Hydroxides ; Lithium ; Minerals ; Natural products ; Particle interactions ; Particle size ; Pyridinium ; Raw materials ; Reprocessing ; Toxicity</subject><ispartof>Minerals (Basel), 2024-07, Vol.14 (7), p.650</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-769b79292a3c87f42dfe7cf98e22c98b92c6a5ff4988a867f0d89f7a008efcac3</cites><orcidid>0000-0002-6160-6108 ; 0000-0002-4587-0865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Steiner, Frédéric</creatorcontrib><creatorcontrib>Zgheib, Ali</creatorcontrib><creatorcontrib>Fischer, Maximilian Hans</creatorcontrib><creatorcontrib>Büttner, Lukas</creatorcontrib><creatorcontrib>Schmidt, Andreas</creatorcontrib><creatorcontrib>Breitung-Faes, Sandra</creatorcontrib><title>In Situ Hydrophobization of Lithium Aluminate Particles for Flotations by Dry Grinding in the Presence of Punicines</title><title>Minerals (Basel)</title><description>The engineered artificial mineral (EnAM) lithium aluminate (LiAlO2) is a promising candidate for the recycling of lithium from slags, which can originate from the reprocessing of batteries, for example. Derivatives of the natural product Punicine (1-(2′,5′-dihydroxyphenyl)-pyridinium) from Punica granatum have been proven to be effective switchable collectors for the flotation of this mineral as they react to light. In the present study, three Punicines were added to a planetary ball mill before grinding LiAlO2 to particle sizes suitable for flotation. We investigated the influence of Punicine and two derivatives with C10 and C17 side chains on the grinding results at different grinding times and conditions as well as on the yields in flotations. SEM images of the particles, IR and ICP–OES measurements provided insights into the Punicine–particle interactions. They showed that Punicines not only prevent the formation of hydrophilic and thus undesirable lithium aluminate hydroxide hydrate (LiAl2(OH)7 ▪ x H2O) surfaces in this process, as is unavoidable in aqueous flotation without this pretreatment, they also prevent the undesired release of lithium cations into the aqueous phase. Due to considerable hydrophobization of the particle surface of LiAlO2, nearly quantitative recovery rates of this engineered artificial mineral are achieved using the process described here.</description><subject>Aluminum</subject><subject>Batteries</subject><subject>Cations</subject><subject>Dry grinding</subject><subject>Flotation</subject><subject>Hydrates</subject><subject>Hydroxides</subject><subject>Lithium</subject><subject>Minerals</subject><subject>Natural products</subject><subject>Particle interactions</subject><subject>Particle size</subject><subject>Pyridinium</subject><subject>Raw materials</subject><subject>Reprocessing</subject><subject>Toxicity</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkM1KAzEURoMoWGpXvkDApYxmkskkWZZqf6BgQQV3QyaT2JRpUpPMYnz6Tq2L3s29i_OdCx8A9zl6IkSg5711eYEYKim6AiOMGM3yknxdX9y3YBLjDg0jcsIpHoG4cvDdpg4u-yb4w9bX9lcm6x30Bq5t2tpuD6dtN8hl0nAjQ7Kq1REaH-C89ekPjrDu4Uvo4SJY11j3Da2DaTvwQUftlD7ZNp2zyjod78CNkW3Uk_89Bp_z14_ZMlu_LVaz6TpTmJYpY6WomcACS6I4MwVujGbKCK4xVoLXAqtSUmMKwbnkJTOo4cIwiRDXRklFxuDh7D0E_9PpmKqd74IbXlYE8SFWUJoP1OOZUsHHGLSpDsHuZeirHFWnYquLYskRIu5suA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Steiner, Frédéric</creator><creator>Zgheib, Ali</creator><creator>Fischer, Maximilian Hans</creator><creator>Büttner, Lukas</creator><creator>Schmidt, Andreas</creator><creator>Breitung-Faes, Sandra</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6160-6108</orcidid><orcidid>https://orcid.org/0000-0002-4587-0865</orcidid></search><sort><creationdate>20240701</creationdate><title>In Situ Hydrophobization of Lithium Aluminate Particles for Flotations by Dry Grinding in the Presence of Punicines</title><author>Steiner, Frédéric ; Zgheib, Ali ; Fischer, Maximilian Hans ; Büttner, Lukas ; Schmidt, Andreas ; Breitung-Faes, Sandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-769b79292a3c87f42dfe7cf98e22c98b92c6a5ff4988a867f0d89f7a008efcac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum</topic><topic>Batteries</topic><topic>Cations</topic><topic>Dry grinding</topic><topic>Flotation</topic><topic>Hydrates</topic><topic>Hydroxides</topic><topic>Lithium</topic><topic>Minerals</topic><topic>Natural products</topic><topic>Particle interactions</topic><topic>Particle size</topic><topic>Pyridinium</topic><topic>Raw materials</topic><topic>Reprocessing</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steiner, Frédéric</creatorcontrib><creatorcontrib>Zgheib, Ali</creatorcontrib><creatorcontrib>Fischer, Maximilian Hans</creatorcontrib><creatorcontrib>Büttner, Lukas</creatorcontrib><creatorcontrib>Schmidt, Andreas</creatorcontrib><creatorcontrib>Breitung-Faes, Sandra</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steiner, Frédéric</au><au>Zgheib, Ali</au><au>Fischer, Maximilian Hans</au><au>Büttner, Lukas</au><au>Schmidt, Andreas</au><au>Breitung-Faes, Sandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Hydrophobization of Lithium Aluminate Particles for Flotations by Dry Grinding in the Presence of Punicines</atitle><jtitle>Minerals (Basel)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>14</volume><issue>7</issue><spage>650</spage><pages>650-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>The engineered artificial mineral (EnAM) lithium aluminate (LiAlO2) is a promising candidate for the recycling of lithium from slags, which can originate from the reprocessing of batteries, for example. Derivatives of the natural product Punicine (1-(2′,5′-dihydroxyphenyl)-pyridinium) from Punica granatum have been proven to be effective switchable collectors for the flotation of this mineral as they react to light. In the present study, three Punicines were added to a planetary ball mill before grinding LiAlO2 to particle sizes suitable for flotation. We investigated the influence of Punicine and two derivatives with C10 and C17 side chains on the grinding results at different grinding times and conditions as well as on the yields in flotations. SEM images of the particles, IR and ICP–OES measurements provided insights into the Punicine–particle interactions. They showed that Punicines not only prevent the formation of hydrophilic and thus undesirable lithium aluminate hydroxide hydrate (LiAl2(OH)7 ▪ x H2O) surfaces in this process, as is unavoidable in aqueous flotation without this pretreatment, they also prevent the undesired release of lithium cations into the aqueous phase. Due to considerable hydrophobization of the particle surface of LiAlO2, nearly quantitative recovery rates of this engineered artificial mineral are achieved using the process described here.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min14070650</doi><orcidid>https://orcid.org/0000-0002-6160-6108</orcidid><orcidid>https://orcid.org/0000-0002-4587-0865</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-163X
ispartof Minerals (Basel), 2024-07, Vol.14 (7), p.650
issn 2075-163X
2075-163X
language eng
recordid cdi_proquest_journals_3084984551
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Aluminum
Batteries
Cations
Dry grinding
Flotation
Hydrates
Hydroxides
Lithium
Minerals
Natural products
Particle interactions
Particle size
Pyridinium
Raw materials
Reprocessing
Toxicity
title In Situ Hydrophobization of Lithium Aluminate Particles for Flotations by Dry Grinding in the Presence of Punicines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T03%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Hydrophobization%20of%20Lithium%20Aluminate%20Particles%20for%20Flotations%20by%20Dry%20Grinding%20in%20the%20Presence%20of%20Punicines&rft.jtitle=Minerals%20(Basel)&rft.au=Steiner,%20Fr%C3%A9d%C3%A9ric&rft.date=2024-07-01&rft.volume=14&rft.issue=7&rft.spage=650&rft.pages=650-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min14070650&rft_dat=%3Cproquest_cross%3E3084984551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084984551&rft_id=info:pmid/&rfr_iscdi=true