A Review of Capacity Fade Mechanism and Promotion Strategies for Lithium Iron Phosphate Batteries

Commercialized lithium iron phosphate (LiFePO4) batteries have become mainstream energy storage batteries due to their incomparable advantages in safety, stability, and low cost. However, LiFePO4 (LFP) batteries still have the problems of capacity decline, poor low-temperature performance, etc. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2024-07, Vol.14 (7), p.832
Hauptverfasser: Hu, Chen, Geng, Mengmeng, Yang, Haomiao, Fan, Maosong, Sun, Zhaoqin, Yu, Ran, Wei, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 832
container_title Coatings (Basel)
container_volume 14
creator Hu, Chen
Geng, Mengmeng
Yang, Haomiao
Fan, Maosong
Sun, Zhaoqin
Yu, Ran
Wei, Bin
description Commercialized lithium iron phosphate (LiFePO4) batteries have become mainstream energy storage batteries due to their incomparable advantages in safety, stability, and low cost. However, LiFePO4 (LFP) batteries still have the problems of capacity decline, poor low-temperature performance, etc. The problems are mainly caused by the following reasons: (1) the irreversible phase transition of LiFePO4; (2) the formation of the cathode–electrolyte interface (CEI) layer; (3) the dissolution of the iron elements; (4) the oxidative decomposition of the electrolyte; (5) the repeated growth and thickening of the solid–electrolyte interface (SEI) film on the anode electrode; (6) the structural deterioration of graphite anodes; (7) the growth of lithium dendrites. In order to eliminate the problems, methods such as the modification, doping, and coating of cathode materials, electrolyte design, and anode coating have been studied to effectively improve the electrochemical performance of LFP batteries. This review briefly describes the working principle of the LFP battery, the crystal structure of the LFP cathode material, and its electrochemical performance as a cathode. The performance degradation mechanism of LFP batteries is summarized in three aspects—cathode material, anode material, and electrolyte—and the research status of LFP material modification and electrolyte design is emphatically discussed. Finally, the challenges and future development of LFP batteries are prospected.
doi_str_mv 10.3390/coatings14070832
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3084750835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A803764693</galeid><sourcerecordid>A803764693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-7b315c30deb637c5dbe49a123329c0624685f3b963e175c9650b620e73574fa53</originalsourceid><addsrcrecordid>eNpdUE1PwzAMrRBITLA7x0icN5K6SZrjmBhMGmLi41ylqbtlWpuRZKD9ezKNA8I--Ml-z5Zflt0wOgZQ9M44HW2_CqygkpaQn2WDnEo1EgXLz__gy2wYwoamUAxKpgaZnpBX_LL4TVxLpnqnjY0HMtMNkmc0a93b0BHdN2TpXeeidT15i15HXFkMpHWeLGxc231H5j7NlmsXdus0Jvc6RvSJdJ1dtHobcPhbr7KP2cP79Gm0eHmcTyeLkQHK40jWwHiCDdYCpOFNjYXSLAfIlaEiL0TJW6iVAGSSGyU4rUVOUQKXRas5XGW3p7077z73GGK1cXvfp5MV0LKQPBlzZI1PrJXeYmX71qVvTMoGO2tcj61N_UlJQYpCKEgCehIY70Lw2FY7bzvtDxWj1dH86r_58AOVjXfi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084750835</pqid></control><display><type>article</type><title>A Review of Capacity Fade Mechanism and Promotion Strategies for Lithium Iron Phosphate Batteries</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Hu, Chen ; Geng, Mengmeng ; Yang, Haomiao ; Fan, Maosong ; Sun, Zhaoqin ; Yu, Ran ; Wei, Bin</creator><creatorcontrib>Hu, Chen ; Geng, Mengmeng ; Yang, Haomiao ; Fan, Maosong ; Sun, Zhaoqin ; Yu, Ran ; Wei, Bin</creatorcontrib><description>Commercialized lithium iron phosphate (LiFePO4) batteries have become mainstream energy storage batteries due to their incomparable advantages in safety, stability, and low cost. However, LiFePO4 (LFP) batteries still have the problems of capacity decline, poor low-temperature performance, etc. The problems are mainly caused by the following reasons: (1) the irreversible phase transition of LiFePO4; (2) the formation of the cathode–electrolyte interface (CEI) layer; (3) the dissolution of the iron elements; (4) the oxidative decomposition of the electrolyte; (5) the repeated growth and thickening of the solid–electrolyte interface (SEI) film on the anode electrode; (6) the structural deterioration of graphite anodes; (7) the growth of lithium dendrites. In order to eliminate the problems, methods such as the modification, doping, and coating of cathode materials, electrolyte design, and anode coating have been studied to effectively improve the electrochemical performance of LFP batteries. This review briefly describes the working principle of the LFP battery, the crystal structure of the LFP cathode material, and its electrochemical performance as a cathode. The performance degradation mechanism of LFP batteries is summarized in three aspects—cathode material, anode material, and electrolyte—and the research status of LFP material modification and electrolyte design is emphatically discussed. Finally, the challenges and future development of LFP batteries are prospected.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings14070832</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aging ; Anodes ; Batteries ; Cathodes ; Cathodic dissolution ; Commercialization ; Crystal structure ; Crystals ; Dissolution ; Electric vehicles ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrodes ; Electrolytes ; Electrons ; Energy storage ; Graphite ; Iron ; Lithium ; Lithium-ion batteries ; Low temperature ; Performance degradation ; Phase transitions ; Phosphates ; Storage batteries ; Structure</subject><ispartof>Coatings (Basel), 2024-07, Vol.14 (7), p.832</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-7b315c30deb637c5dbe49a123329c0624685f3b963e175c9650b620e73574fa53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hu, Chen</creatorcontrib><creatorcontrib>Geng, Mengmeng</creatorcontrib><creatorcontrib>Yang, Haomiao</creatorcontrib><creatorcontrib>Fan, Maosong</creatorcontrib><creatorcontrib>Sun, Zhaoqin</creatorcontrib><creatorcontrib>Yu, Ran</creatorcontrib><creatorcontrib>Wei, Bin</creatorcontrib><title>A Review of Capacity Fade Mechanism and Promotion Strategies for Lithium Iron Phosphate Batteries</title><title>Coatings (Basel)</title><description>Commercialized lithium iron phosphate (LiFePO4) batteries have become mainstream energy storage batteries due to their incomparable advantages in safety, stability, and low cost. However, LiFePO4 (LFP) batteries still have the problems of capacity decline, poor low-temperature performance, etc. The problems are mainly caused by the following reasons: (1) the irreversible phase transition of LiFePO4; (2) the formation of the cathode–electrolyte interface (CEI) layer; (3) the dissolution of the iron elements; (4) the oxidative decomposition of the electrolyte; (5) the repeated growth and thickening of the solid–electrolyte interface (SEI) film on the anode electrode; (6) the structural deterioration of graphite anodes; (7) the growth of lithium dendrites. In order to eliminate the problems, methods such as the modification, doping, and coating of cathode materials, electrolyte design, and anode coating have been studied to effectively improve the electrochemical performance of LFP batteries. This review briefly describes the working principle of the LFP battery, the crystal structure of the LFP cathode material, and its electrochemical performance as a cathode. The performance degradation mechanism of LFP batteries is summarized in three aspects—cathode material, anode material, and electrolyte—and the research status of LFP material modification and electrolyte design is emphatically discussed. Finally, the challenges and future development of LFP batteries are prospected.</description><subject>Aging</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Cathodic dissolution</subject><subject>Commercialization</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Dissolution</subject><subject>Electric vehicles</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrons</subject><subject>Energy storage</subject><subject>Graphite</subject><subject>Iron</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Low temperature</subject><subject>Performance degradation</subject><subject>Phase transitions</subject><subject>Phosphates</subject><subject>Storage batteries</subject><subject>Structure</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdUE1PwzAMrRBITLA7x0icN5K6SZrjmBhMGmLi41ylqbtlWpuRZKD9ezKNA8I--Ml-z5Zflt0wOgZQ9M44HW2_CqygkpaQn2WDnEo1EgXLz__gy2wYwoamUAxKpgaZnpBX_LL4TVxLpnqnjY0HMtMNkmc0a93b0BHdN2TpXeeidT15i15HXFkMpHWeLGxc231H5j7NlmsXdus0Jvc6RvSJdJ1dtHobcPhbr7KP2cP79Gm0eHmcTyeLkQHK40jWwHiCDdYCpOFNjYXSLAfIlaEiL0TJW6iVAGSSGyU4rUVOUQKXRas5XGW3p7077z73GGK1cXvfp5MV0LKQPBlzZI1PrJXeYmX71qVvTMoGO2tcj61N_UlJQYpCKEgCehIY70Lw2FY7bzvtDxWj1dH86r_58AOVjXfi</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Hu, Chen</creator><creator>Geng, Mengmeng</creator><creator>Yang, Haomiao</creator><creator>Fan, Maosong</creator><creator>Sun, Zhaoqin</creator><creator>Yu, Ran</creator><creator>Wei, Bin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240701</creationdate><title>A Review of Capacity Fade Mechanism and Promotion Strategies for Lithium Iron Phosphate Batteries</title><author>Hu, Chen ; Geng, Mengmeng ; Yang, Haomiao ; Fan, Maosong ; Sun, Zhaoqin ; Yu, Ran ; Wei, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-7b315c30deb637c5dbe49a123329c0624685f3b963e175c9650b620e73574fa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aging</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Cathodic dissolution</topic><topic>Commercialization</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Dissolution</topic><topic>Electric vehicles</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrons</topic><topic>Energy storage</topic><topic>Graphite</topic><topic>Iron</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Low temperature</topic><topic>Performance degradation</topic><topic>Phase transitions</topic><topic>Phosphates</topic><topic>Storage batteries</topic><topic>Structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Chen</creatorcontrib><creatorcontrib>Geng, Mengmeng</creatorcontrib><creatorcontrib>Yang, Haomiao</creatorcontrib><creatorcontrib>Fan, Maosong</creatorcontrib><creatorcontrib>Sun, Zhaoqin</creatorcontrib><creatorcontrib>Yu, Ran</creatorcontrib><creatorcontrib>Wei, Bin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Chen</au><au>Geng, Mengmeng</au><au>Yang, Haomiao</au><au>Fan, Maosong</au><au>Sun, Zhaoqin</au><au>Yu, Ran</au><au>Wei, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Capacity Fade Mechanism and Promotion Strategies for Lithium Iron Phosphate Batteries</atitle><jtitle>Coatings (Basel)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>14</volume><issue>7</issue><spage>832</spage><pages>832-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>Commercialized lithium iron phosphate (LiFePO4) batteries have become mainstream energy storage batteries due to their incomparable advantages in safety, stability, and low cost. However, LiFePO4 (LFP) batteries still have the problems of capacity decline, poor low-temperature performance, etc. The problems are mainly caused by the following reasons: (1) the irreversible phase transition of LiFePO4; (2) the formation of the cathode–electrolyte interface (CEI) layer; (3) the dissolution of the iron elements; (4) the oxidative decomposition of the electrolyte; (5) the repeated growth and thickening of the solid–electrolyte interface (SEI) film on the anode electrode; (6) the structural deterioration of graphite anodes; (7) the growth of lithium dendrites. In order to eliminate the problems, methods such as the modification, doping, and coating of cathode materials, electrolyte design, and anode coating have been studied to effectively improve the electrochemical performance of LFP batteries. This review briefly describes the working principle of the LFP battery, the crystal structure of the LFP cathode material, and its electrochemical performance as a cathode. The performance degradation mechanism of LFP batteries is summarized in three aspects—cathode material, anode material, and electrolyte—and the research status of LFP material modification and electrolyte design is emphatically discussed. Finally, the challenges and future development of LFP batteries are prospected.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings14070832</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6412
ispartof Coatings (Basel), 2024-07, Vol.14 (7), p.832
issn 2079-6412
2079-6412
language eng
recordid cdi_proquest_journals_3084750835
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Aging
Anodes
Batteries
Cathodes
Cathodic dissolution
Commercialization
Crystal structure
Crystals
Dissolution
Electric vehicles
Electrochemical analysis
Electrochemistry
Electrode materials
Electrodes
Electrolytes
Electrons
Energy storage
Graphite
Iron
Lithium
Lithium-ion batteries
Low temperature
Performance degradation
Phase transitions
Phosphates
Storage batteries
Structure
title A Review of Capacity Fade Mechanism and Promotion Strategies for Lithium Iron Phosphate Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Capacity%20Fade%20Mechanism%20and%20Promotion%20Strategies%20for%20Lithium%20Iron%20Phosphate%20Batteries&rft.jtitle=Coatings%20(Basel)&rft.au=Hu,%20Chen&rft.date=2024-07-01&rft.volume=14&rft.issue=7&rft.spage=832&rft.pages=832-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings14070832&rft_dat=%3Cgale_proqu%3EA803764693%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084750835&rft_id=info:pmid/&rft_galeid=A803764693&rfr_iscdi=true