A Review of Capacity Fade Mechanism and Promotion Strategies for Lithium Iron Phosphate Batteries
Commercialized lithium iron phosphate (LiFePO4) batteries have become mainstream energy storage batteries due to their incomparable advantages in safety, stability, and low cost. However, LiFePO4 (LFP) batteries still have the problems of capacity decline, poor low-temperature performance, etc. The...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2024-07, Vol.14 (7), p.832 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 832 |
container_title | Coatings (Basel) |
container_volume | 14 |
creator | Hu, Chen Geng, Mengmeng Yang, Haomiao Fan, Maosong Sun, Zhaoqin Yu, Ran Wei, Bin |
description | Commercialized lithium iron phosphate (LiFePO4) batteries have become mainstream energy storage batteries due to their incomparable advantages in safety, stability, and low cost. However, LiFePO4 (LFP) batteries still have the problems of capacity decline, poor low-temperature performance, etc. The problems are mainly caused by the following reasons: (1) the irreversible phase transition of LiFePO4; (2) the formation of the cathode–electrolyte interface (CEI) layer; (3) the dissolution of the iron elements; (4) the oxidative decomposition of the electrolyte; (5) the repeated growth and thickening of the solid–electrolyte interface (SEI) film on the anode electrode; (6) the structural deterioration of graphite anodes; (7) the growth of lithium dendrites. In order to eliminate the problems, methods such as the modification, doping, and coating of cathode materials, electrolyte design, and anode coating have been studied to effectively improve the electrochemical performance of LFP batteries. This review briefly describes the working principle of the LFP battery, the crystal structure of the LFP cathode material, and its electrochemical performance as a cathode. The performance degradation mechanism of LFP batteries is summarized in three aspects—cathode material, anode material, and electrolyte—and the research status of LFP material modification and electrolyte design is emphatically discussed. Finally, the challenges and future development of LFP batteries are prospected. |
doi_str_mv | 10.3390/coatings14070832 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3084750835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A803764693</galeid><sourcerecordid>A803764693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-7b315c30deb637c5dbe49a123329c0624685f3b963e175c9650b620e73574fa53</originalsourceid><addsrcrecordid>eNpdUE1PwzAMrRBITLA7x0icN5K6SZrjmBhMGmLi41ylqbtlWpuRZKD9ezKNA8I--Ml-z5Zflt0wOgZQ9M44HW2_CqygkpaQn2WDnEo1EgXLz__gy2wYwoamUAxKpgaZnpBX_LL4TVxLpnqnjY0HMtMNkmc0a93b0BHdN2TpXeeidT15i15HXFkMpHWeLGxc231H5j7NlmsXdus0Jvc6RvSJdJ1dtHobcPhbr7KP2cP79Gm0eHmcTyeLkQHK40jWwHiCDdYCpOFNjYXSLAfIlaEiL0TJW6iVAGSSGyU4rUVOUQKXRas5XGW3p7077z73GGK1cXvfp5MV0LKQPBlzZI1PrJXeYmX71qVvTMoGO2tcj61N_UlJQYpCKEgCehIY70Lw2FY7bzvtDxWj1dH86r_58AOVjXfi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084750835</pqid></control><display><type>article</type><title>A Review of Capacity Fade Mechanism and Promotion Strategies for Lithium Iron Phosphate Batteries</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Hu, Chen ; Geng, Mengmeng ; Yang, Haomiao ; Fan, Maosong ; Sun, Zhaoqin ; Yu, Ran ; Wei, Bin</creator><creatorcontrib>Hu, Chen ; Geng, Mengmeng ; Yang, Haomiao ; Fan, Maosong ; Sun, Zhaoqin ; Yu, Ran ; Wei, Bin</creatorcontrib><description>Commercialized lithium iron phosphate (LiFePO4) batteries have become mainstream energy storage batteries due to their incomparable advantages in safety, stability, and low cost. However, LiFePO4 (LFP) batteries still have the problems of capacity decline, poor low-temperature performance, etc. The problems are mainly caused by the following reasons: (1) the irreversible phase transition of LiFePO4; (2) the formation of the cathode–electrolyte interface (CEI) layer; (3) the dissolution of the iron elements; (4) the oxidative decomposition of the electrolyte; (5) the repeated growth and thickening of the solid–electrolyte interface (SEI) film on the anode electrode; (6) the structural deterioration of graphite anodes; (7) the growth of lithium dendrites. In order to eliminate the problems, methods such as the modification, doping, and coating of cathode materials, electrolyte design, and anode coating have been studied to effectively improve the electrochemical performance of LFP batteries. This review briefly describes the working principle of the LFP battery, the crystal structure of the LFP cathode material, and its electrochemical performance as a cathode. The performance degradation mechanism of LFP batteries is summarized in three aspects—cathode material, anode material, and electrolyte—and the research status of LFP material modification and electrolyte design is emphatically discussed. Finally, the challenges and future development of LFP batteries are prospected.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings14070832</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aging ; Anodes ; Batteries ; Cathodes ; Cathodic dissolution ; Commercialization ; Crystal structure ; Crystals ; Dissolution ; Electric vehicles ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrodes ; Electrolytes ; Electrons ; Energy storage ; Graphite ; Iron ; Lithium ; Lithium-ion batteries ; Low temperature ; Performance degradation ; Phase transitions ; Phosphates ; Storage batteries ; Structure</subject><ispartof>Coatings (Basel), 2024-07, Vol.14 (7), p.832</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-7b315c30deb637c5dbe49a123329c0624685f3b963e175c9650b620e73574fa53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hu, Chen</creatorcontrib><creatorcontrib>Geng, Mengmeng</creatorcontrib><creatorcontrib>Yang, Haomiao</creatorcontrib><creatorcontrib>Fan, Maosong</creatorcontrib><creatorcontrib>Sun, Zhaoqin</creatorcontrib><creatorcontrib>Yu, Ran</creatorcontrib><creatorcontrib>Wei, Bin</creatorcontrib><title>A Review of Capacity Fade Mechanism and Promotion Strategies for Lithium Iron Phosphate Batteries</title><title>Coatings (Basel)</title><description>Commercialized lithium iron phosphate (LiFePO4) batteries have become mainstream energy storage batteries due to their incomparable advantages in safety, stability, and low cost. However, LiFePO4 (LFP) batteries still have the problems of capacity decline, poor low-temperature performance, etc. The problems are mainly caused by the following reasons: (1) the irreversible phase transition of LiFePO4; (2) the formation of the cathode–electrolyte interface (CEI) layer; (3) the dissolution of the iron elements; (4) the oxidative decomposition of the electrolyte; (5) the repeated growth and thickening of the solid–electrolyte interface (SEI) film on the anode electrode; (6) the structural deterioration of graphite anodes; (7) the growth of lithium dendrites. In order to eliminate the problems, methods such as the modification, doping, and coating of cathode materials, electrolyte design, and anode coating have been studied to effectively improve the electrochemical performance of LFP batteries. This review briefly describes the working principle of the LFP battery, the crystal structure of the LFP cathode material, and its electrochemical performance as a cathode. The performance degradation mechanism of LFP batteries is summarized in three aspects—cathode material, anode material, and electrolyte—and the research status of LFP material modification and electrolyte design is emphatically discussed. Finally, the challenges and future development of LFP batteries are prospected.</description><subject>Aging</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Cathodic dissolution</subject><subject>Commercialization</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Dissolution</subject><subject>Electric vehicles</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrons</subject><subject>Energy storage</subject><subject>Graphite</subject><subject>Iron</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Low temperature</subject><subject>Performance degradation</subject><subject>Phase transitions</subject><subject>Phosphates</subject><subject>Storage batteries</subject><subject>Structure</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdUE1PwzAMrRBITLA7x0icN5K6SZrjmBhMGmLi41ylqbtlWpuRZKD9ezKNA8I--Ml-z5Zflt0wOgZQ9M44HW2_CqygkpaQn2WDnEo1EgXLz__gy2wYwoamUAxKpgaZnpBX_LL4TVxLpnqnjY0HMtMNkmc0a93b0BHdN2TpXeeidT15i15HXFkMpHWeLGxc231H5j7NlmsXdus0Jvc6RvSJdJ1dtHobcPhbr7KP2cP79Gm0eHmcTyeLkQHK40jWwHiCDdYCpOFNjYXSLAfIlaEiL0TJW6iVAGSSGyU4rUVOUQKXRas5XGW3p7077z73GGK1cXvfp5MV0LKQPBlzZI1PrJXeYmX71qVvTMoGO2tcj61N_UlJQYpCKEgCehIY70Lw2FY7bzvtDxWj1dH86r_58AOVjXfi</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Hu, Chen</creator><creator>Geng, Mengmeng</creator><creator>Yang, Haomiao</creator><creator>Fan, Maosong</creator><creator>Sun, Zhaoqin</creator><creator>Yu, Ran</creator><creator>Wei, Bin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240701</creationdate><title>A Review of Capacity Fade Mechanism and Promotion Strategies for Lithium Iron Phosphate Batteries</title><author>Hu, Chen ; Geng, Mengmeng ; Yang, Haomiao ; Fan, Maosong ; Sun, Zhaoqin ; Yu, Ran ; Wei, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-7b315c30deb637c5dbe49a123329c0624685f3b963e175c9650b620e73574fa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aging</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Cathodic dissolution</topic><topic>Commercialization</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Dissolution</topic><topic>Electric vehicles</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrons</topic><topic>Energy storage</topic><topic>Graphite</topic><topic>Iron</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Low temperature</topic><topic>Performance degradation</topic><topic>Phase transitions</topic><topic>Phosphates</topic><topic>Storage batteries</topic><topic>Structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Chen</creatorcontrib><creatorcontrib>Geng, Mengmeng</creatorcontrib><creatorcontrib>Yang, Haomiao</creatorcontrib><creatorcontrib>Fan, Maosong</creatorcontrib><creatorcontrib>Sun, Zhaoqin</creatorcontrib><creatorcontrib>Yu, Ran</creatorcontrib><creatorcontrib>Wei, Bin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Chen</au><au>Geng, Mengmeng</au><au>Yang, Haomiao</au><au>Fan, Maosong</au><au>Sun, Zhaoqin</au><au>Yu, Ran</au><au>Wei, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Capacity Fade Mechanism and Promotion Strategies for Lithium Iron Phosphate Batteries</atitle><jtitle>Coatings (Basel)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>14</volume><issue>7</issue><spage>832</spage><pages>832-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>Commercialized lithium iron phosphate (LiFePO4) batteries have become mainstream energy storage batteries due to their incomparable advantages in safety, stability, and low cost. However, LiFePO4 (LFP) batteries still have the problems of capacity decline, poor low-temperature performance, etc. The problems are mainly caused by the following reasons: (1) the irreversible phase transition of LiFePO4; (2) the formation of the cathode–electrolyte interface (CEI) layer; (3) the dissolution of the iron elements; (4) the oxidative decomposition of the electrolyte; (5) the repeated growth and thickening of the solid–electrolyte interface (SEI) film on the anode electrode; (6) the structural deterioration of graphite anodes; (7) the growth of lithium dendrites. In order to eliminate the problems, methods such as the modification, doping, and coating of cathode materials, electrolyte design, and anode coating have been studied to effectively improve the electrochemical performance of LFP batteries. This review briefly describes the working principle of the LFP battery, the crystal structure of the LFP cathode material, and its electrochemical performance as a cathode. The performance degradation mechanism of LFP batteries is summarized in three aspects—cathode material, anode material, and electrolyte—and the research status of LFP material modification and electrolyte design is emphatically discussed. Finally, the challenges and future development of LFP batteries are prospected.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings14070832</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-6412 |
ispartof | Coatings (Basel), 2024-07, Vol.14 (7), p.832 |
issn | 2079-6412 2079-6412 |
language | eng |
recordid | cdi_proquest_journals_3084750835 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Aging Anodes Batteries Cathodes Cathodic dissolution Commercialization Crystal structure Crystals Dissolution Electric vehicles Electrochemical analysis Electrochemistry Electrode materials Electrodes Electrolytes Electrons Energy storage Graphite Iron Lithium Lithium-ion batteries Low temperature Performance degradation Phase transitions Phosphates Storage batteries Structure |
title | A Review of Capacity Fade Mechanism and Promotion Strategies for Lithium Iron Phosphate Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Capacity%20Fade%20Mechanism%20and%20Promotion%20Strategies%20for%20Lithium%20Iron%20Phosphate%20Batteries&rft.jtitle=Coatings%20(Basel)&rft.au=Hu,%20Chen&rft.date=2024-07-01&rft.volume=14&rft.issue=7&rft.spage=832&rft.pages=832-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings14070832&rft_dat=%3Cgale_proqu%3EA803764693%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084750835&rft_id=info:pmid/&rft_galeid=A803764693&rfr_iscdi=true |