Initial Development and Analysis of a Context-Aware Burn Resuscitation Decision-Support Algorithm
Burn patients require high-volume intravenous resuscitation with the goal of restoring global tissue perfusion to make up for burn-induced loss of fluid from the vasculature. Clinical standards of burn resuscitation are predominantly based on urinary output, which is not context-aware because it is...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-07, Vol.13 (14), p.2713 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 2713 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Kao, Yi-Ming Arabidarrehdor, Ghazal Parajuli, Babita Ziedins, Eriks E. McLawhorn, Melissa M. D’Orio, Cameron S. Oliver, Mary Moffatt, Lauren Mathew, Shane K. Kelly, Edward J. Carney, Bonnie C. Shupp, Jeffrey W. Burmeister, David M. Hahn, Jin-Oh |
description | Burn patients require high-volume intravenous resuscitation with the goal of restoring global tissue perfusion to make up for burn-induced loss of fluid from the vasculature. Clinical standards of burn resuscitation are predominantly based on urinary output, which is not context-aware because it is not a trustworthy indicator of tissue perfusion. This paper investigates the initial development and analysis of a context-aware decision-support algorithm for burn resuscitation. In this context, we hypothesized that the use of a more context-aware surrogate of tissue perfusion may enhance the efficacy of burn resuscitation in normalizing cardiac output. Toward this goal, we exploited the arterial pulse wave analysis to discover novel surrogates of cardiac output. Then, we developed the cardiac output-enabled burn resuscitation decision-support (CaRD) algorithm. Using experimental data collected from animals undergoing burn injury and resuscitation, we conducted an initial evaluation and analysis of the CaRD algorithm in comparison with the commercially available Burn NavigatorTM algorithm. Combining a surrogate of cardiac output with urinary output in the CaRD algorithm has the potential to improve the efficacy of burn resuscitation. However, the improvement achieved in this work was only marginal, which is likely due to the suboptimal tuning of the CaRD algorithm with the limited available dataset. In this way, the results showed both promise and challenges that are crucial to future algorithm development. |
doi_str_mv | 10.3390/electronics13142713 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3084743968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A803768623</galeid><sourcerecordid>A803768623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-9643eff22740e06f34bff6b04439508b11c0d824c67ae4a333385091083b0e413</originalsourceid><addsrcrecordid>eNptUMtOwzAQjBBIVNAv4GKJc4qddRPnGMqrUiUkHufIcdfFVWoH2wH69xiVAwdmD7tazcw-suyC0RlATa-wRxW9s0YFBowXFYOjbFLQqs7roi6O_9Sn2TSELU2oGQigk0wurYlG9uQGP7B3ww5tJNKuSWNlvw8mEKeJJAtnI37FvPmUHsn16C15wjAGZaKMxtkkVyakIn8eh8H5SJp-47yJb7vz7ETLPuD0N59lr3e3L4uHfPV4v1w0q1yxuox5XXJArYui4hRpqYF3Wpcd5RzqORUdY4quRcFVWUnkEhLEPJ1BBXQUOYOz7PLgO3j3PmKI7dalPdPIFqjgVfIpRWLNDqyN7LE1VrvopUqxxp1RzqI2qd8IClUpygKSAA4C5V0IHnU7eLOTft8y2v78v_3n__AN6zR7BA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084743968</pqid></control><display><type>article</type><title>Initial Development and Analysis of a Context-Aware Burn Resuscitation Decision-Support Algorithm</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kao, Yi-Ming ; Arabidarrehdor, Ghazal ; Parajuli, Babita ; Ziedins, Eriks E. ; McLawhorn, Melissa M. ; D’Orio, Cameron S. ; Oliver, Mary ; Moffatt, Lauren ; Mathew, Shane K. ; Kelly, Edward J. ; Carney, Bonnie C. ; Shupp, Jeffrey W. ; Burmeister, David M. ; Hahn, Jin-Oh</creator><creatorcontrib>Kao, Yi-Ming ; Arabidarrehdor, Ghazal ; Parajuli, Babita ; Ziedins, Eriks E. ; McLawhorn, Melissa M. ; D’Orio, Cameron S. ; Oliver, Mary ; Moffatt, Lauren ; Mathew, Shane K. ; Kelly, Edward J. ; Carney, Bonnie C. ; Shupp, Jeffrey W. ; Burmeister, David M. ; Hahn, Jin-Oh</creatorcontrib><description>Burn patients require high-volume intravenous resuscitation with the goal of restoring global tissue perfusion to make up for burn-induced loss of fluid from the vasculature. Clinical standards of burn resuscitation are predominantly based on urinary output, which is not context-aware because it is not a trustworthy indicator of tissue perfusion. This paper investigates the initial development and analysis of a context-aware decision-support algorithm for burn resuscitation. In this context, we hypothesized that the use of a more context-aware surrogate of tissue perfusion may enhance the efficacy of burn resuscitation in normalizing cardiac output. Toward this goal, we exploited the arterial pulse wave analysis to discover novel surrogates of cardiac output. Then, we developed the cardiac output-enabled burn resuscitation decision-support (CaRD) algorithm. Using experimental data collected from animals undergoing burn injury and resuscitation, we conducted an initial evaluation and analysis of the CaRD algorithm in comparison with the commercially available Burn NavigatorTM algorithm. Combining a surrogate of cardiac output with urinary output in the CaRD algorithm has the potential to improve the efficacy of burn resuscitation. However, the improvement achieved in this work was only marginal, which is likely due to the suboptimal tuning of the CaRD algorithm with the limited available dataset. In this way, the results showed both promise and challenges that are crucial to future algorithm development.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13142713</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Animals ; Burns ; Cardiac output ; Context ; Datasets ; Decision support systems ; Effectiveness ; Hypotheses ; Injury analysis ; Injury prevention ; Patients ; Regulatory approval ; Resuscitation</subject><ispartof>Electronics (Basel), 2024-07, Vol.13 (14), p.2713</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-9643eff22740e06f34bff6b04439508b11c0d824c67ae4a333385091083b0e413</cites><orcidid>0000-0001-9742-6662 ; 0000-0001-5386-1312 ; 0000-0001-5429-2836 ; 0000-0001-7400-2509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Kao, Yi-Ming</creatorcontrib><creatorcontrib>Arabidarrehdor, Ghazal</creatorcontrib><creatorcontrib>Parajuli, Babita</creatorcontrib><creatorcontrib>Ziedins, Eriks E.</creatorcontrib><creatorcontrib>McLawhorn, Melissa M.</creatorcontrib><creatorcontrib>D’Orio, Cameron S.</creatorcontrib><creatorcontrib>Oliver, Mary</creatorcontrib><creatorcontrib>Moffatt, Lauren</creatorcontrib><creatorcontrib>Mathew, Shane K.</creatorcontrib><creatorcontrib>Kelly, Edward J.</creatorcontrib><creatorcontrib>Carney, Bonnie C.</creatorcontrib><creatorcontrib>Shupp, Jeffrey W.</creatorcontrib><creatorcontrib>Burmeister, David M.</creatorcontrib><creatorcontrib>Hahn, Jin-Oh</creatorcontrib><title>Initial Development and Analysis of a Context-Aware Burn Resuscitation Decision-Support Algorithm</title><title>Electronics (Basel)</title><description>Burn patients require high-volume intravenous resuscitation with the goal of restoring global tissue perfusion to make up for burn-induced loss of fluid from the vasculature. Clinical standards of burn resuscitation are predominantly based on urinary output, which is not context-aware because it is not a trustworthy indicator of tissue perfusion. This paper investigates the initial development and analysis of a context-aware decision-support algorithm for burn resuscitation. In this context, we hypothesized that the use of a more context-aware surrogate of tissue perfusion may enhance the efficacy of burn resuscitation in normalizing cardiac output. Toward this goal, we exploited the arterial pulse wave analysis to discover novel surrogates of cardiac output. Then, we developed the cardiac output-enabled burn resuscitation decision-support (CaRD) algorithm. Using experimental data collected from animals undergoing burn injury and resuscitation, we conducted an initial evaluation and analysis of the CaRD algorithm in comparison with the commercially available Burn NavigatorTM algorithm. Combining a surrogate of cardiac output with urinary output in the CaRD algorithm has the potential to improve the efficacy of burn resuscitation. However, the improvement achieved in this work was only marginal, which is likely due to the suboptimal tuning of the CaRD algorithm with the limited available dataset. In this way, the results showed both promise and challenges that are crucial to future algorithm development.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Burns</subject><subject>Cardiac output</subject><subject>Context</subject><subject>Datasets</subject><subject>Decision support systems</subject><subject>Effectiveness</subject><subject>Hypotheses</subject><subject>Injury analysis</subject><subject>Injury prevention</subject><subject>Patients</subject><subject>Regulatory approval</subject><subject>Resuscitation</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUMtOwzAQjBBIVNAv4GKJc4qddRPnGMqrUiUkHufIcdfFVWoH2wH69xiVAwdmD7tazcw-suyC0RlATa-wRxW9s0YFBowXFYOjbFLQqs7roi6O_9Sn2TSELU2oGQigk0wurYlG9uQGP7B3ww5tJNKuSWNlvw8mEKeJJAtnI37FvPmUHsn16C15wjAGZaKMxtkkVyakIn8eh8H5SJp-47yJb7vz7ETLPuD0N59lr3e3L4uHfPV4v1w0q1yxuox5XXJArYui4hRpqYF3Wpcd5RzqORUdY4quRcFVWUnkEhLEPJ1BBXQUOYOz7PLgO3j3PmKI7dalPdPIFqjgVfIpRWLNDqyN7LE1VrvopUqxxp1RzqI2qd8IClUpygKSAA4C5V0IHnU7eLOTft8y2v78v_3n__AN6zR7BA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Kao, Yi-Ming</creator><creator>Arabidarrehdor, Ghazal</creator><creator>Parajuli, Babita</creator><creator>Ziedins, Eriks E.</creator><creator>McLawhorn, Melissa M.</creator><creator>D’Orio, Cameron S.</creator><creator>Oliver, Mary</creator><creator>Moffatt, Lauren</creator><creator>Mathew, Shane K.</creator><creator>Kelly, Edward J.</creator><creator>Carney, Bonnie C.</creator><creator>Shupp, Jeffrey W.</creator><creator>Burmeister, David M.</creator><creator>Hahn, Jin-Oh</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9742-6662</orcidid><orcidid>https://orcid.org/0000-0001-5386-1312</orcidid><orcidid>https://orcid.org/0000-0001-5429-2836</orcidid><orcidid>https://orcid.org/0000-0001-7400-2509</orcidid></search><sort><creationdate>20240701</creationdate><title>Initial Development and Analysis of a Context-Aware Burn Resuscitation Decision-Support Algorithm</title><author>Kao, Yi-Ming ; Arabidarrehdor, Ghazal ; Parajuli, Babita ; Ziedins, Eriks E. ; McLawhorn, Melissa M. ; D’Orio, Cameron S. ; Oliver, Mary ; Moffatt, Lauren ; Mathew, Shane K. ; Kelly, Edward J. ; Carney, Bonnie C. ; Shupp, Jeffrey W. ; Burmeister, David M. ; Hahn, Jin-Oh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-9643eff22740e06f34bff6b04439508b11c0d824c67ae4a333385091083b0e413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Burns</topic><topic>Cardiac output</topic><topic>Context</topic><topic>Datasets</topic><topic>Decision support systems</topic><topic>Effectiveness</topic><topic>Hypotheses</topic><topic>Injury analysis</topic><topic>Injury prevention</topic><topic>Patients</topic><topic>Regulatory approval</topic><topic>Resuscitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kao, Yi-Ming</creatorcontrib><creatorcontrib>Arabidarrehdor, Ghazal</creatorcontrib><creatorcontrib>Parajuli, Babita</creatorcontrib><creatorcontrib>Ziedins, Eriks E.</creatorcontrib><creatorcontrib>McLawhorn, Melissa M.</creatorcontrib><creatorcontrib>D’Orio, Cameron S.</creatorcontrib><creatorcontrib>Oliver, Mary</creatorcontrib><creatorcontrib>Moffatt, Lauren</creatorcontrib><creatorcontrib>Mathew, Shane K.</creatorcontrib><creatorcontrib>Kelly, Edward J.</creatorcontrib><creatorcontrib>Carney, Bonnie C.</creatorcontrib><creatorcontrib>Shupp, Jeffrey W.</creatorcontrib><creatorcontrib>Burmeister, David M.</creatorcontrib><creatorcontrib>Hahn, Jin-Oh</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kao, Yi-Ming</au><au>Arabidarrehdor, Ghazal</au><au>Parajuli, Babita</au><au>Ziedins, Eriks E.</au><au>McLawhorn, Melissa M.</au><au>D’Orio, Cameron S.</au><au>Oliver, Mary</au><au>Moffatt, Lauren</au><au>Mathew, Shane K.</au><au>Kelly, Edward J.</au><au>Carney, Bonnie C.</au><au>Shupp, Jeffrey W.</au><au>Burmeister, David M.</au><au>Hahn, Jin-Oh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initial Development and Analysis of a Context-Aware Burn Resuscitation Decision-Support Algorithm</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>13</volume><issue>14</issue><spage>2713</spage><pages>2713-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Burn patients require high-volume intravenous resuscitation with the goal of restoring global tissue perfusion to make up for burn-induced loss of fluid from the vasculature. Clinical standards of burn resuscitation are predominantly based on urinary output, which is not context-aware because it is not a trustworthy indicator of tissue perfusion. This paper investigates the initial development and analysis of a context-aware decision-support algorithm for burn resuscitation. In this context, we hypothesized that the use of a more context-aware surrogate of tissue perfusion may enhance the efficacy of burn resuscitation in normalizing cardiac output. Toward this goal, we exploited the arterial pulse wave analysis to discover novel surrogates of cardiac output. Then, we developed the cardiac output-enabled burn resuscitation decision-support (CaRD) algorithm. Using experimental data collected from animals undergoing burn injury and resuscitation, we conducted an initial evaluation and analysis of the CaRD algorithm in comparison with the commercially available Burn NavigatorTM algorithm. Combining a surrogate of cardiac output with urinary output in the CaRD algorithm has the potential to improve the efficacy of burn resuscitation. However, the improvement achieved in this work was only marginal, which is likely due to the suboptimal tuning of the CaRD algorithm with the limited available dataset. In this way, the results showed both promise and challenges that are crucial to future algorithm development.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13142713</doi><orcidid>https://orcid.org/0000-0001-9742-6662</orcidid><orcidid>https://orcid.org/0000-0001-5386-1312</orcidid><orcidid>https://orcid.org/0000-0001-5429-2836</orcidid><orcidid>https://orcid.org/0000-0001-7400-2509</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-07, Vol.13 (14), p.2713 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3084743968 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Animals Burns Cardiac output Context Datasets Decision support systems Effectiveness Hypotheses Injury analysis Injury prevention Patients Regulatory approval Resuscitation |
title | Initial Development and Analysis of a Context-Aware Burn Resuscitation Decision-Support Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initial%20Development%20and%20Analysis%20of%20a%20Context-Aware%20Burn%20Resuscitation%20Decision-Support%20Algorithm&rft.jtitle=Electronics%20(Basel)&rft.au=Kao,%20Yi-Ming&rft.date=2024-07-01&rft.volume=13&rft.issue=14&rft.spage=2713&rft.pages=2713-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13142713&rft_dat=%3Cgale_proqu%3EA803768623%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084743968&rft_id=info:pmid/&rft_galeid=A803768623&rfr_iscdi=true |