Initial Development and Analysis of a Context-Aware Burn Resuscitation Decision-Support Algorithm

Burn patients require high-volume intravenous resuscitation with the goal of restoring global tissue perfusion to make up for burn-induced loss of fluid from the vasculature. Clinical standards of burn resuscitation are predominantly based on urinary output, which is not context-aware because it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-07, Vol.13 (14), p.2713
Hauptverfasser: Kao, Yi-Ming, Arabidarrehdor, Ghazal, Parajuli, Babita, Ziedins, Eriks E., McLawhorn, Melissa M., D’Orio, Cameron S., Oliver, Mary, Moffatt, Lauren, Mathew, Shane K., Kelly, Edward J., Carney, Bonnie C., Shupp, Jeffrey W., Burmeister, David M., Hahn, Jin-Oh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 2713
container_title Electronics (Basel)
container_volume 13
creator Kao, Yi-Ming
Arabidarrehdor, Ghazal
Parajuli, Babita
Ziedins, Eriks E.
McLawhorn, Melissa M.
D’Orio, Cameron S.
Oliver, Mary
Moffatt, Lauren
Mathew, Shane K.
Kelly, Edward J.
Carney, Bonnie C.
Shupp, Jeffrey W.
Burmeister, David M.
Hahn, Jin-Oh
description Burn patients require high-volume intravenous resuscitation with the goal of restoring global tissue perfusion to make up for burn-induced loss of fluid from the vasculature. Clinical standards of burn resuscitation are predominantly based on urinary output, which is not context-aware because it is not a trustworthy indicator of tissue perfusion. This paper investigates the initial development and analysis of a context-aware decision-support algorithm for burn resuscitation. In this context, we hypothesized that the use of a more context-aware surrogate of tissue perfusion may enhance the efficacy of burn resuscitation in normalizing cardiac output. Toward this goal, we exploited the arterial pulse wave analysis to discover novel surrogates of cardiac output. Then, we developed the cardiac output-enabled burn resuscitation decision-support (CaRD) algorithm. Using experimental data collected from animals undergoing burn injury and resuscitation, we conducted an initial evaluation and analysis of the CaRD algorithm in comparison with the commercially available Burn NavigatorTM algorithm. Combining a surrogate of cardiac output with urinary output in the CaRD algorithm has the potential to improve the efficacy of burn resuscitation. However, the improvement achieved in this work was only marginal, which is likely due to the suboptimal tuning of the CaRD algorithm with the limited available dataset. In this way, the results showed both promise and challenges that are crucial to future algorithm development.
doi_str_mv 10.3390/electronics13142713
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3084743968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A803768623</galeid><sourcerecordid>A803768623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-9643eff22740e06f34bff6b04439508b11c0d824c67ae4a333385091083b0e413</originalsourceid><addsrcrecordid>eNptUMtOwzAQjBBIVNAv4GKJc4qddRPnGMqrUiUkHufIcdfFVWoH2wH69xiVAwdmD7tazcw-suyC0RlATa-wRxW9s0YFBowXFYOjbFLQqs7roi6O_9Sn2TSELU2oGQigk0wurYlG9uQGP7B3ww5tJNKuSWNlvw8mEKeJJAtnI37FvPmUHsn16C15wjAGZaKMxtkkVyakIn8eh8H5SJp-47yJb7vz7ETLPuD0N59lr3e3L4uHfPV4v1w0q1yxuox5XXJArYui4hRpqYF3Wpcd5RzqORUdY4quRcFVWUnkEhLEPJ1BBXQUOYOz7PLgO3j3PmKI7dalPdPIFqjgVfIpRWLNDqyN7LE1VrvopUqxxp1RzqI2qd8IClUpygKSAA4C5V0IHnU7eLOTft8y2v78v_3n__AN6zR7BA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084743968</pqid></control><display><type>article</type><title>Initial Development and Analysis of a Context-Aware Burn Resuscitation Decision-Support Algorithm</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kao, Yi-Ming ; Arabidarrehdor, Ghazal ; Parajuli, Babita ; Ziedins, Eriks E. ; McLawhorn, Melissa M. ; D’Orio, Cameron S. ; Oliver, Mary ; Moffatt, Lauren ; Mathew, Shane K. ; Kelly, Edward J. ; Carney, Bonnie C. ; Shupp, Jeffrey W. ; Burmeister, David M. ; Hahn, Jin-Oh</creator><creatorcontrib>Kao, Yi-Ming ; Arabidarrehdor, Ghazal ; Parajuli, Babita ; Ziedins, Eriks E. ; McLawhorn, Melissa M. ; D’Orio, Cameron S. ; Oliver, Mary ; Moffatt, Lauren ; Mathew, Shane K. ; Kelly, Edward J. ; Carney, Bonnie C. ; Shupp, Jeffrey W. ; Burmeister, David M. ; Hahn, Jin-Oh</creatorcontrib><description>Burn patients require high-volume intravenous resuscitation with the goal of restoring global tissue perfusion to make up for burn-induced loss of fluid from the vasculature. Clinical standards of burn resuscitation are predominantly based on urinary output, which is not context-aware because it is not a trustworthy indicator of tissue perfusion. This paper investigates the initial development and analysis of a context-aware decision-support algorithm for burn resuscitation. In this context, we hypothesized that the use of a more context-aware surrogate of tissue perfusion may enhance the efficacy of burn resuscitation in normalizing cardiac output. Toward this goal, we exploited the arterial pulse wave analysis to discover novel surrogates of cardiac output. Then, we developed the cardiac output-enabled burn resuscitation decision-support (CaRD) algorithm. Using experimental data collected from animals undergoing burn injury and resuscitation, we conducted an initial evaluation and analysis of the CaRD algorithm in comparison with the commercially available Burn NavigatorTM algorithm. Combining a surrogate of cardiac output with urinary output in the CaRD algorithm has the potential to improve the efficacy of burn resuscitation. However, the improvement achieved in this work was only marginal, which is likely due to the suboptimal tuning of the CaRD algorithm with the limited available dataset. In this way, the results showed both promise and challenges that are crucial to future algorithm development.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13142713</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Animals ; Burns ; Cardiac output ; Context ; Datasets ; Decision support systems ; Effectiveness ; Hypotheses ; Injury analysis ; Injury prevention ; Patients ; Regulatory approval ; Resuscitation</subject><ispartof>Electronics (Basel), 2024-07, Vol.13 (14), p.2713</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-9643eff22740e06f34bff6b04439508b11c0d824c67ae4a333385091083b0e413</cites><orcidid>0000-0001-9742-6662 ; 0000-0001-5386-1312 ; 0000-0001-5429-2836 ; 0000-0001-7400-2509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Kao, Yi-Ming</creatorcontrib><creatorcontrib>Arabidarrehdor, Ghazal</creatorcontrib><creatorcontrib>Parajuli, Babita</creatorcontrib><creatorcontrib>Ziedins, Eriks E.</creatorcontrib><creatorcontrib>McLawhorn, Melissa M.</creatorcontrib><creatorcontrib>D’Orio, Cameron S.</creatorcontrib><creatorcontrib>Oliver, Mary</creatorcontrib><creatorcontrib>Moffatt, Lauren</creatorcontrib><creatorcontrib>Mathew, Shane K.</creatorcontrib><creatorcontrib>Kelly, Edward J.</creatorcontrib><creatorcontrib>Carney, Bonnie C.</creatorcontrib><creatorcontrib>Shupp, Jeffrey W.</creatorcontrib><creatorcontrib>Burmeister, David M.</creatorcontrib><creatorcontrib>Hahn, Jin-Oh</creatorcontrib><title>Initial Development and Analysis of a Context-Aware Burn Resuscitation Decision-Support Algorithm</title><title>Electronics (Basel)</title><description>Burn patients require high-volume intravenous resuscitation with the goal of restoring global tissue perfusion to make up for burn-induced loss of fluid from the vasculature. Clinical standards of burn resuscitation are predominantly based on urinary output, which is not context-aware because it is not a trustworthy indicator of tissue perfusion. This paper investigates the initial development and analysis of a context-aware decision-support algorithm for burn resuscitation. In this context, we hypothesized that the use of a more context-aware surrogate of tissue perfusion may enhance the efficacy of burn resuscitation in normalizing cardiac output. Toward this goal, we exploited the arterial pulse wave analysis to discover novel surrogates of cardiac output. Then, we developed the cardiac output-enabled burn resuscitation decision-support (CaRD) algorithm. Using experimental data collected from animals undergoing burn injury and resuscitation, we conducted an initial evaluation and analysis of the CaRD algorithm in comparison with the commercially available Burn NavigatorTM algorithm. Combining a surrogate of cardiac output with urinary output in the CaRD algorithm has the potential to improve the efficacy of burn resuscitation. However, the improvement achieved in this work was only marginal, which is likely due to the suboptimal tuning of the CaRD algorithm with the limited available dataset. In this way, the results showed both promise and challenges that are crucial to future algorithm development.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Burns</subject><subject>Cardiac output</subject><subject>Context</subject><subject>Datasets</subject><subject>Decision support systems</subject><subject>Effectiveness</subject><subject>Hypotheses</subject><subject>Injury analysis</subject><subject>Injury prevention</subject><subject>Patients</subject><subject>Regulatory approval</subject><subject>Resuscitation</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUMtOwzAQjBBIVNAv4GKJc4qddRPnGMqrUiUkHufIcdfFVWoH2wH69xiVAwdmD7tazcw-suyC0RlATa-wRxW9s0YFBowXFYOjbFLQqs7roi6O_9Sn2TSELU2oGQigk0wurYlG9uQGP7B3ww5tJNKuSWNlvw8mEKeJJAtnI37FvPmUHsn16C15wjAGZaKMxtkkVyakIn8eh8H5SJp-47yJb7vz7ETLPuD0N59lr3e3L4uHfPV4v1w0q1yxuox5XXJArYui4hRpqYF3Wpcd5RzqORUdY4quRcFVWUnkEhLEPJ1BBXQUOYOz7PLgO3j3PmKI7dalPdPIFqjgVfIpRWLNDqyN7LE1VrvopUqxxp1RzqI2qd8IClUpygKSAA4C5V0IHnU7eLOTft8y2v78v_3n__AN6zR7BA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Kao, Yi-Ming</creator><creator>Arabidarrehdor, Ghazal</creator><creator>Parajuli, Babita</creator><creator>Ziedins, Eriks E.</creator><creator>McLawhorn, Melissa M.</creator><creator>D’Orio, Cameron S.</creator><creator>Oliver, Mary</creator><creator>Moffatt, Lauren</creator><creator>Mathew, Shane K.</creator><creator>Kelly, Edward J.</creator><creator>Carney, Bonnie C.</creator><creator>Shupp, Jeffrey W.</creator><creator>Burmeister, David M.</creator><creator>Hahn, Jin-Oh</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9742-6662</orcidid><orcidid>https://orcid.org/0000-0001-5386-1312</orcidid><orcidid>https://orcid.org/0000-0001-5429-2836</orcidid><orcidid>https://orcid.org/0000-0001-7400-2509</orcidid></search><sort><creationdate>20240701</creationdate><title>Initial Development and Analysis of a Context-Aware Burn Resuscitation Decision-Support Algorithm</title><author>Kao, Yi-Ming ; Arabidarrehdor, Ghazal ; Parajuli, Babita ; Ziedins, Eriks E. ; McLawhorn, Melissa M. ; D’Orio, Cameron S. ; Oliver, Mary ; Moffatt, Lauren ; Mathew, Shane K. ; Kelly, Edward J. ; Carney, Bonnie C. ; Shupp, Jeffrey W. ; Burmeister, David M. ; Hahn, Jin-Oh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-9643eff22740e06f34bff6b04439508b11c0d824c67ae4a333385091083b0e413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Burns</topic><topic>Cardiac output</topic><topic>Context</topic><topic>Datasets</topic><topic>Decision support systems</topic><topic>Effectiveness</topic><topic>Hypotheses</topic><topic>Injury analysis</topic><topic>Injury prevention</topic><topic>Patients</topic><topic>Regulatory approval</topic><topic>Resuscitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kao, Yi-Ming</creatorcontrib><creatorcontrib>Arabidarrehdor, Ghazal</creatorcontrib><creatorcontrib>Parajuli, Babita</creatorcontrib><creatorcontrib>Ziedins, Eriks E.</creatorcontrib><creatorcontrib>McLawhorn, Melissa M.</creatorcontrib><creatorcontrib>D’Orio, Cameron S.</creatorcontrib><creatorcontrib>Oliver, Mary</creatorcontrib><creatorcontrib>Moffatt, Lauren</creatorcontrib><creatorcontrib>Mathew, Shane K.</creatorcontrib><creatorcontrib>Kelly, Edward J.</creatorcontrib><creatorcontrib>Carney, Bonnie C.</creatorcontrib><creatorcontrib>Shupp, Jeffrey W.</creatorcontrib><creatorcontrib>Burmeister, David M.</creatorcontrib><creatorcontrib>Hahn, Jin-Oh</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kao, Yi-Ming</au><au>Arabidarrehdor, Ghazal</au><au>Parajuli, Babita</au><au>Ziedins, Eriks E.</au><au>McLawhorn, Melissa M.</au><au>D’Orio, Cameron S.</au><au>Oliver, Mary</au><au>Moffatt, Lauren</au><au>Mathew, Shane K.</au><au>Kelly, Edward J.</au><au>Carney, Bonnie C.</au><au>Shupp, Jeffrey W.</au><au>Burmeister, David M.</au><au>Hahn, Jin-Oh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initial Development and Analysis of a Context-Aware Burn Resuscitation Decision-Support Algorithm</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>13</volume><issue>14</issue><spage>2713</spage><pages>2713-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Burn patients require high-volume intravenous resuscitation with the goal of restoring global tissue perfusion to make up for burn-induced loss of fluid from the vasculature. Clinical standards of burn resuscitation are predominantly based on urinary output, which is not context-aware because it is not a trustworthy indicator of tissue perfusion. This paper investigates the initial development and analysis of a context-aware decision-support algorithm for burn resuscitation. In this context, we hypothesized that the use of a more context-aware surrogate of tissue perfusion may enhance the efficacy of burn resuscitation in normalizing cardiac output. Toward this goal, we exploited the arterial pulse wave analysis to discover novel surrogates of cardiac output. Then, we developed the cardiac output-enabled burn resuscitation decision-support (CaRD) algorithm. Using experimental data collected from animals undergoing burn injury and resuscitation, we conducted an initial evaluation and analysis of the CaRD algorithm in comparison with the commercially available Burn NavigatorTM algorithm. Combining a surrogate of cardiac output with urinary output in the CaRD algorithm has the potential to improve the efficacy of burn resuscitation. However, the improvement achieved in this work was only marginal, which is likely due to the suboptimal tuning of the CaRD algorithm with the limited available dataset. In this way, the results showed both promise and challenges that are crucial to future algorithm development.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13142713</doi><orcidid>https://orcid.org/0000-0001-9742-6662</orcidid><orcidid>https://orcid.org/0000-0001-5386-1312</orcidid><orcidid>https://orcid.org/0000-0001-5429-2836</orcidid><orcidid>https://orcid.org/0000-0001-7400-2509</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-07, Vol.13 (14), p.2713
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3084743968
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Animals
Burns
Cardiac output
Context
Datasets
Decision support systems
Effectiveness
Hypotheses
Injury analysis
Injury prevention
Patients
Regulatory approval
Resuscitation
title Initial Development and Analysis of a Context-Aware Burn Resuscitation Decision-Support Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initial%20Development%20and%20Analysis%20of%20a%20Context-Aware%20Burn%20Resuscitation%20Decision-Support%20Algorithm&rft.jtitle=Electronics%20(Basel)&rft.au=Kao,%20Yi-Ming&rft.date=2024-07-01&rft.volume=13&rft.issue=14&rft.spage=2713&rft.pages=2713-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13142713&rft_dat=%3Cgale_proqu%3EA803768623%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084743968&rft_id=info:pmid/&rft_galeid=A803768623&rfr_iscdi=true