Exploring local well-being and vulnerability through OpenStreetMap: the case of Italy
This article investigates the potential of OpenStreetMap (OSM) data in predicting local well-being and resilience in Italy. The linear Least Absolute Shrinkage and Selection Operator (LASSO) is used to handle multicollinearity problems and select the most influential OSM features. The data-driven ap...
Gespeichert in:
Veröffentlicht in: | Quality & quantity 2024-08, Vol.58 (4), p.3435-3473 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3473 |
---|---|
container_issue | 4 |
container_start_page | 3435 |
container_title | Quality & quantity |
container_volume | 58 |
creator | Ninivaggi, Federico Cutrini, Eleonora |
description | This article investigates the potential of OpenStreetMap (OSM) data in predicting local well-being and resilience in Italy. The linear Least Absolute Shrinkage and Selection Operator (LASSO) is used to handle multicollinearity problems and select the most influential OSM features. The data-driven approach provides evidence that OSM information is highly correlated with several socioeconomic metrics at a provincial scale (NUTS-3 level). Moreover, it claims that some specific points of interest—e.g., bookmakers—can be used for a rapid territorial appraisal of vulnerable territories, i.e., areas that are affected by economic backwardness, poor institutions, low human capital and that, for these adverse conditions, deserve special attention by policymakers concerned with a reduction of regional disparities. While OSM can become a powerful source for policy planning, monitoring and evaluation, future works in the field should explore the scalability of the approach, its use for forecasting purposes, and the adoption of various models and tools such as machine learning techniques to grasp even non-linear relationships between variables. |
doi_str_mv | 10.1007/s11135-023-01805-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3084591134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084591134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1856-4496484b008e99f81958a2a4cee4f62fe1960b07e8cdc4a4da040a284a7344433</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMYyd22KGKR6WiLqBry0knbSqTBDsB-ve4BIkdq5Gu5tzRHEIuOVxzAHUTOOciZZAIBlxDyrIjMuGpEkxpmR6TCYAQLOVKnZKzEHYAEZNqQlb3X51rfd1sqGtL6-gnOscKPAS2WdOPwTXobVG7ut_TfuvbYbOlyw6bl94j9s-2u40x0tIGpG1F5711-3NyUlkX8OJ3Tsnq4f519sQWy8f57G7BSq7TjEmZZ1LLAkBjnlea56m2iZUloqyypEKeZ1CAQl2uS2nl2oIEm2hplZBSCjElV2Nv59v3AUNvdu3gm3jSCIiP59GKjFvJuFX6NgSPlel8_Wb93nAwB31m1GeiPvOjz2QREiMUuoMd9H_V_1DfA8lxxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084591134</pqid></control><display><type>article</type><title>Exploring local well-being and vulnerability through OpenStreetMap: the case of Italy</title><source>SpringerNature Journals</source><source>Sociological Abstracts</source><creator>Ninivaggi, Federico ; Cutrini, Eleonora</creator><creatorcontrib>Ninivaggi, Federico ; Cutrini, Eleonora</creatorcontrib><description>This article investigates the potential of OpenStreetMap (OSM) data in predicting local well-being and resilience in Italy. The linear Least Absolute Shrinkage and Selection Operator (LASSO) is used to handle multicollinearity problems and select the most influential OSM features. The data-driven approach provides evidence that OSM information is highly correlated with several socioeconomic metrics at a provincial scale (NUTS-3 level). Moreover, it claims that some specific points of interest—e.g., bookmakers—can be used for a rapid territorial appraisal of vulnerable territories, i.e., areas that are affected by economic backwardness, poor institutions, low human capital and that, for these adverse conditions, deserve special attention by policymakers concerned with a reduction of regional disparities. While OSM can become a powerful source for policy planning, monitoring and evaluation, future works in the field should explore the scalability of the approach, its use for forecasting purposes, and the adoption of various models and tools such as machine learning techniques to grasp even non-linear relationships between variables.</description><identifier>ISSN: 0033-5177</identifier><identifier>EISSN: 1573-7845</identifier><identifier>DOI: 10.1007/s11135-023-01805-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Big Data ; Economic activity ; Economic underdevelopment ; Emergency communications systems ; Forecasting ; GDP ; Gross Domestic Product ; Human capital ; Methodology of the Social Sciences ; Policy making ; Resilience ; Social Sciences ; Socioeconomic factors ; Vulnerability ; Well being</subject><ispartof>Quality & quantity, 2024-08, Vol.58 (4), p.3435-3473</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1856-4496484b008e99f81958a2a4cee4f62fe1960b07e8cdc4a4da040a284a7344433</cites><orcidid>0000-0001-7007-6076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11135-023-01805-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11135-023-01805-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,33781,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Ninivaggi, Federico</creatorcontrib><creatorcontrib>Cutrini, Eleonora</creatorcontrib><title>Exploring local well-being and vulnerability through OpenStreetMap: the case of Italy</title><title>Quality & quantity</title><addtitle>Qual Quant</addtitle><description>This article investigates the potential of OpenStreetMap (OSM) data in predicting local well-being and resilience in Italy. The linear Least Absolute Shrinkage and Selection Operator (LASSO) is used to handle multicollinearity problems and select the most influential OSM features. The data-driven approach provides evidence that OSM information is highly correlated with several socioeconomic metrics at a provincial scale (NUTS-3 level). Moreover, it claims that some specific points of interest—e.g., bookmakers—can be used for a rapid territorial appraisal of vulnerable territories, i.e., areas that are affected by economic backwardness, poor institutions, low human capital and that, for these adverse conditions, deserve special attention by policymakers concerned with a reduction of regional disparities. While OSM can become a powerful source for policy planning, monitoring and evaluation, future works in the field should explore the scalability of the approach, its use for forecasting purposes, and the adoption of various models and tools such as machine learning techniques to grasp even non-linear relationships between variables.</description><subject>Big Data</subject><subject>Economic activity</subject><subject>Economic underdevelopment</subject><subject>Emergency communications systems</subject><subject>Forecasting</subject><subject>GDP</subject><subject>Gross Domestic Product</subject><subject>Human capital</subject><subject>Methodology of the Social Sciences</subject><subject>Policy making</subject><subject>Resilience</subject><subject>Social Sciences</subject><subject>Socioeconomic factors</subject><subject>Vulnerability</subject><subject>Well being</subject><issn>0033-5177</issn><issn>1573-7845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMYyd22KGKR6WiLqBry0knbSqTBDsB-ve4BIkdq5Gu5tzRHEIuOVxzAHUTOOciZZAIBlxDyrIjMuGpEkxpmR6TCYAQLOVKnZKzEHYAEZNqQlb3X51rfd1sqGtL6-gnOscKPAS2WdOPwTXobVG7ut_TfuvbYbOlyw6bl94j9s-2u40x0tIGpG1F5711-3NyUlkX8OJ3Tsnq4f519sQWy8f57G7BSq7TjEmZZ1LLAkBjnlea56m2iZUloqyypEKeZ1CAQl2uS2nl2oIEm2hplZBSCjElV2Nv59v3AUNvdu3gm3jSCIiP59GKjFvJuFX6NgSPlel8_Wb93nAwB31m1GeiPvOjz2QREiMUuoMd9H_V_1DfA8lxxg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Ninivaggi, Federico</creator><creator>Cutrini, Eleonora</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>8BJ</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FQK</scope><scope>JBE</scope><scope>WZK</scope><orcidid>https://orcid.org/0000-0001-7007-6076</orcidid></search><sort><creationdate>20240801</creationdate><title>Exploring local well-being and vulnerability through OpenStreetMap: the case of Italy</title><author>Ninivaggi, Federico ; Cutrini, Eleonora</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1856-4496484b008e99f81958a2a4cee4f62fe1960b07e8cdc4a4da040a284a7344433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Big Data</topic><topic>Economic activity</topic><topic>Economic underdevelopment</topic><topic>Emergency communications systems</topic><topic>Forecasting</topic><topic>GDP</topic><topic>Gross Domestic Product</topic><topic>Human capital</topic><topic>Methodology of the Social Sciences</topic><topic>Policy making</topic><topic>Resilience</topic><topic>Social Sciences</topic><topic>Socioeconomic factors</topic><topic>Vulnerability</topic><topic>Well being</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ninivaggi, Federico</creatorcontrib><creatorcontrib>Cutrini, Eleonora</creatorcontrib><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Quality & quantity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ninivaggi, Federico</au><au>Cutrini, Eleonora</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring local well-being and vulnerability through OpenStreetMap: the case of Italy</atitle><jtitle>Quality & quantity</jtitle><stitle>Qual Quant</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>58</volume><issue>4</issue><spage>3435</spage><epage>3473</epage><pages>3435-3473</pages><issn>0033-5177</issn><eissn>1573-7845</eissn><abstract>This article investigates the potential of OpenStreetMap (OSM) data in predicting local well-being and resilience in Italy. The linear Least Absolute Shrinkage and Selection Operator (LASSO) is used to handle multicollinearity problems and select the most influential OSM features. The data-driven approach provides evidence that OSM information is highly correlated with several socioeconomic metrics at a provincial scale (NUTS-3 level). Moreover, it claims that some specific points of interest—e.g., bookmakers—can be used for a rapid territorial appraisal of vulnerable territories, i.e., areas that are affected by economic backwardness, poor institutions, low human capital and that, for these adverse conditions, deserve special attention by policymakers concerned with a reduction of regional disparities. While OSM can become a powerful source for policy planning, monitoring and evaluation, future works in the field should explore the scalability of the approach, its use for forecasting purposes, and the adoption of various models and tools such as machine learning techniques to grasp even non-linear relationships between variables.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11135-023-01805-6</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0001-7007-6076</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-5177 |
ispartof | Quality & quantity, 2024-08, Vol.58 (4), p.3435-3473 |
issn | 0033-5177 1573-7845 |
language | eng |
recordid | cdi_proquest_journals_3084591134 |
source | SpringerNature Journals; Sociological Abstracts |
subjects | Big Data Economic activity Economic underdevelopment Emergency communications systems Forecasting GDP Gross Domestic Product Human capital Methodology of the Social Sciences Policy making Resilience Social Sciences Socioeconomic factors Vulnerability Well being |
title | Exploring local well-being and vulnerability through OpenStreetMap: the case of Italy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20local%20well-being%20and%20vulnerability%20through%20OpenStreetMap:%20the%20case%20of%20Italy&rft.jtitle=Quality%20&%20quantity&rft.au=Ninivaggi,%20Federico&rft.date=2024-08-01&rft.volume=58&rft.issue=4&rft.spage=3435&rft.epage=3473&rft.pages=3435-3473&rft.issn=0033-5177&rft.eissn=1573-7845&rft_id=info:doi/10.1007/s11135-023-01805-6&rft_dat=%3Cproquest_cross%3E3084591134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084591134&rft_id=info:pmid/&rfr_iscdi=true |