Accelerated Quantum Amplitude Estimation without QFT

We put forward a Quantum Amplitude Estimation algorithm delivering superior performance (lower quantum computational complexity and faster classical computation parts) compared to the approaches available to-date. The algorithm does not relay on the Quantum Fourier Transform and its quantum computat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Roux, Alet, Zastawniak, Tomasz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Roux, Alet
Zastawniak, Tomasz
description We put forward a Quantum Amplitude Estimation algorithm delivering superior performance (lower quantum computational complexity and faster classical computation parts) compared to the approaches available to-date. The algorithm does not relay on the Quantum Fourier Transform and its quantum computational complexity is of order \(O(\frac{1}{\varepsilon})\) in terms of the target accuracy \(\varepsilon>0\). The \(O(\frac{1}{\varepsilon})\) bound on quantum computational complexity is also superior compared to those in the earlier approaches due to smaller constants. Moreover, a much tighter bound is obtained by means of computer-assisted estimates for the expected value of quantum computational complexity. The correctness of the algorithm and the \(O(\frac{1}{\varepsilon})\) bound on quantum computational complexity are supported by precise proofs.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3084544243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084544243</sourcerecordid><originalsourceid>FETCH-proquest_journals_30845442433</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOwScCzEX7VqkxbXQvYT2FFNyqckJvr4OPoDTP3z_jhRciEtVS84PpExpZYzx640rJQoim2kCC1EjzLTP2mN2tHGbNZhnoG1C4zSa4Onb4DNkpH03nMh-0TZB-euRnLt2uD-qLYZXhoTjGnL0XxoFq6WSkksh_rs-X2w0nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084544243</pqid></control><display><type>article</type><title>Accelerated Quantum Amplitude Estimation without QFT</title><source>Free E- Journals</source><creator>Roux, Alet ; Zastawniak, Tomasz</creator><creatorcontrib>Roux, Alet ; Zastawniak, Tomasz</creatorcontrib><description>We put forward a Quantum Amplitude Estimation algorithm delivering superior performance (lower quantum computational complexity and faster classical computation parts) compared to the approaches available to-date. The algorithm does not relay on the Quantum Fourier Transform and its quantum computational complexity is of order \(O(\frac{1}{\varepsilon})\) in terms of the target accuracy \(\varepsilon&gt;0\). The \(O(\frac{1}{\varepsilon})\) bound on quantum computational complexity is also superior compared to those in the earlier approaches due to smaller constants. Moreover, a much tighter bound is obtained by means of computer-assisted estimates for the expected value of quantum computational complexity. The correctness of the algorithm and the \(O(\frac{1}{\varepsilon})\) bound on quantum computational complexity are supported by precise proofs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Amplitudes ; Complexity ; Fourier transforms</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Roux, Alet</creatorcontrib><creatorcontrib>Zastawniak, Tomasz</creatorcontrib><title>Accelerated Quantum Amplitude Estimation without QFT</title><title>arXiv.org</title><description>We put forward a Quantum Amplitude Estimation algorithm delivering superior performance (lower quantum computational complexity and faster classical computation parts) compared to the approaches available to-date. The algorithm does not relay on the Quantum Fourier Transform and its quantum computational complexity is of order \(O(\frac{1}{\varepsilon})\) in terms of the target accuracy \(\varepsilon&gt;0\). The \(O(\frac{1}{\varepsilon})\) bound on quantum computational complexity is also superior compared to those in the earlier approaches due to smaller constants. Moreover, a much tighter bound is obtained by means of computer-assisted estimates for the expected value of quantum computational complexity. The correctness of the algorithm and the \(O(\frac{1}{\varepsilon})\) bound on quantum computational complexity are supported by precise proofs.</description><subject>Algorithms</subject><subject>Amplitudes</subject><subject>Complexity</subject><subject>Fourier transforms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOwScCzEX7VqkxbXQvYT2FFNyqckJvr4OPoDTP3z_jhRciEtVS84PpExpZYzx640rJQoim2kCC1EjzLTP2mN2tHGbNZhnoG1C4zSa4Onb4DNkpH03nMh-0TZB-euRnLt2uD-qLYZXhoTjGnL0XxoFq6WSkksh_rs-X2w0nA</recordid><startdate>20240723</startdate><enddate>20240723</enddate><creator>Roux, Alet</creator><creator>Zastawniak, Tomasz</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240723</creationdate><title>Accelerated Quantum Amplitude Estimation without QFT</title><author>Roux, Alet ; Zastawniak, Tomasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30845442433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Amplitudes</topic><topic>Complexity</topic><topic>Fourier transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Roux, Alet</creatorcontrib><creatorcontrib>Zastawniak, Tomasz</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roux, Alet</au><au>Zastawniak, Tomasz</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Accelerated Quantum Amplitude Estimation without QFT</atitle><jtitle>arXiv.org</jtitle><date>2024-07-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We put forward a Quantum Amplitude Estimation algorithm delivering superior performance (lower quantum computational complexity and faster classical computation parts) compared to the approaches available to-date. The algorithm does not relay on the Quantum Fourier Transform and its quantum computational complexity is of order \(O(\frac{1}{\varepsilon})\) in terms of the target accuracy \(\varepsilon&gt;0\). The \(O(\frac{1}{\varepsilon})\) bound on quantum computational complexity is also superior compared to those in the earlier approaches due to smaller constants. Moreover, a much tighter bound is obtained by means of computer-assisted estimates for the expected value of quantum computational complexity. The correctness of the algorithm and the \(O(\frac{1}{\varepsilon})\) bound on quantum computational complexity are supported by precise proofs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3084544243
source Free E- Journals
subjects Algorithms
Amplitudes
Complexity
Fourier transforms
title Accelerated Quantum Amplitude Estimation without QFT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Accelerated%20Quantum%20Amplitude%20Estimation%20without%20QFT&rft.jtitle=arXiv.org&rft.au=Roux,%20Alet&rft.date=2024-07-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3084544243%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084544243&rft_id=info:pmid/&rfr_iscdi=true