Synth4Kws: Synthesized Speech for User Defined Keyword Spotting in Low Resource Environments
One of the challenges in developing a high quality custom keyword spotting (KWS) model is the lengthy and expensive process of collecting training data covering a wide range of languages, phrases and speaking styles. We introduce Synth4Kws - a framework to leverage Text to Speech (TTS) synthesized d...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pai, Zhu Agarwal, Dhruuv Bartel, Jacob W Partridge, Kurt Hyun Jin Park Wang, Quan |
description | One of the challenges in developing a high quality custom keyword spotting (KWS) model is the lengthy and expensive process of collecting training data covering a wide range of languages, phrases and speaking styles. We introduce Synth4Kws - a framework to leverage Text to Speech (TTS) synthesized data for custom KWS in different resource settings. With no real data, we found increasing TTS phrase diversity and utterance sampling monotonically improves model performance, as evaluated by EER and AUC metrics over 11k utterances of the speech command dataset. In low resource settings, with 50k real utterances as a baseline, we found using optimal amounts of TTS data can improve EER by 30.1% and AUC by 46.7%. Furthermore, we mix TTS data with varying amounts of real data and interpolate the real data needed to achieve various quality targets. Our experiments are based on English and single word utterances but the findings generalize to i18n languages and other keyword types. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3084543580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084543580</sourcerecordid><originalsourceid>FETCH-proquest_journals_30845435803</originalsourceid><addsrcrecordid>eNqNi80KwjAQhIMgKOo7LHgWYtJo8aoVQU_-3IQiurUpuqnZaNGnt4oP4Gk-5ptpiLbSejiII6VaosdcSCnVaKyM0W2x3zwp5NGy4gl8Edm-8ASbEvGYQ-Y87Bg9zDCzVPdLfFbOf7wLwdIZLMHKVbBGdnd_REjoYb2jK1Lgrmhmhwtj75cd0Z8n2-liUHp3uyOHtKhPVKtUyzgykTax1P-t3rC7Q2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084543580</pqid></control><display><type>article</type><title>Synth4Kws: Synthesized Speech for User Defined Keyword Spotting in Low Resource Environments</title><source>Free E- Journals</source><creator>Pai, Zhu ; Agarwal, Dhruuv ; Bartel, Jacob W ; Partridge, Kurt ; Hyun Jin Park ; Wang, Quan</creator><creatorcontrib>Pai, Zhu ; Agarwal, Dhruuv ; Bartel, Jacob W ; Partridge, Kurt ; Hyun Jin Park ; Wang, Quan</creatorcontrib><description>One of the challenges in developing a high quality custom keyword spotting (KWS) model is the lengthy and expensive process of collecting training data covering a wide range of languages, phrases and speaking styles. We introduce Synth4Kws - a framework to leverage Text to Speech (TTS) synthesized data for custom KWS in different resource settings. With no real data, we found increasing TTS phrase diversity and utterance sampling monotonically improves model performance, as evaluated by EER and AUC metrics over 11k utterances of the speech command dataset. In low resource settings, with 50k real utterances as a baseline, we found using optimal amounts of TTS data can improve EER by 30.1% and AUC by 46.7%. Furthermore, we mix TTS data with varying amounts of real data and interpolate the real data needed to achieve various quality targets. Our experiments are based on English and single word utterances but the findings generalize to i18n languages and other keyword types.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Keywords ; Languages ; Speech recognition ; Synthesis</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Pai, Zhu</creatorcontrib><creatorcontrib>Agarwal, Dhruuv</creatorcontrib><creatorcontrib>Bartel, Jacob W</creatorcontrib><creatorcontrib>Partridge, Kurt</creatorcontrib><creatorcontrib>Hyun Jin Park</creatorcontrib><creatorcontrib>Wang, Quan</creatorcontrib><title>Synth4Kws: Synthesized Speech for User Defined Keyword Spotting in Low Resource Environments</title><title>arXiv.org</title><description>One of the challenges in developing a high quality custom keyword spotting (KWS) model is the lengthy and expensive process of collecting training data covering a wide range of languages, phrases and speaking styles. We introduce Synth4Kws - a framework to leverage Text to Speech (TTS) synthesized data for custom KWS in different resource settings. With no real data, we found increasing TTS phrase diversity and utterance sampling monotonically improves model performance, as evaluated by EER and AUC metrics over 11k utterances of the speech command dataset. In low resource settings, with 50k real utterances as a baseline, we found using optimal amounts of TTS data can improve EER by 30.1% and AUC by 46.7%. Furthermore, we mix TTS data with varying amounts of real data and interpolate the real data needed to achieve various quality targets. Our experiments are based on English and single word utterances but the findings generalize to i18n languages and other keyword types.</description><subject>Keywords</subject><subject>Languages</subject><subject>Speech recognition</subject><subject>Synthesis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi80KwjAQhIMgKOo7LHgWYtJo8aoVQU_-3IQiurUpuqnZaNGnt4oP4Gk-5ptpiLbSejiII6VaosdcSCnVaKyM0W2x3zwp5NGy4gl8Edm-8ASbEvGYQ-Y87Bg9zDCzVPdLfFbOf7wLwdIZLMHKVbBGdnd_REjoYb2jK1Lgrmhmhwtj75cd0Z8n2-liUHp3uyOHtKhPVKtUyzgykTax1P-t3rC7Q2c</recordid><startdate>20240723</startdate><enddate>20240723</enddate><creator>Pai, Zhu</creator><creator>Agarwal, Dhruuv</creator><creator>Bartel, Jacob W</creator><creator>Partridge, Kurt</creator><creator>Hyun Jin Park</creator><creator>Wang, Quan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240723</creationdate><title>Synth4Kws: Synthesized Speech for User Defined Keyword Spotting in Low Resource Environments</title><author>Pai, Zhu ; Agarwal, Dhruuv ; Bartel, Jacob W ; Partridge, Kurt ; Hyun Jin Park ; Wang, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30845435803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Keywords</topic><topic>Languages</topic><topic>Speech recognition</topic><topic>Synthesis</topic><toplevel>online_resources</toplevel><creatorcontrib>Pai, Zhu</creatorcontrib><creatorcontrib>Agarwal, Dhruuv</creatorcontrib><creatorcontrib>Bartel, Jacob W</creatorcontrib><creatorcontrib>Partridge, Kurt</creatorcontrib><creatorcontrib>Hyun Jin Park</creatorcontrib><creatorcontrib>Wang, Quan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pai, Zhu</au><au>Agarwal, Dhruuv</au><au>Bartel, Jacob W</au><au>Partridge, Kurt</au><au>Hyun Jin Park</au><au>Wang, Quan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Synth4Kws: Synthesized Speech for User Defined Keyword Spotting in Low Resource Environments</atitle><jtitle>arXiv.org</jtitle><date>2024-07-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>One of the challenges in developing a high quality custom keyword spotting (KWS) model is the lengthy and expensive process of collecting training data covering a wide range of languages, phrases and speaking styles. We introduce Synth4Kws - a framework to leverage Text to Speech (TTS) synthesized data for custom KWS in different resource settings. With no real data, we found increasing TTS phrase diversity and utterance sampling monotonically improves model performance, as evaluated by EER and AUC metrics over 11k utterances of the speech command dataset. In low resource settings, with 50k real utterances as a baseline, we found using optimal amounts of TTS data can improve EER by 30.1% and AUC by 46.7%. Furthermore, we mix TTS data with varying amounts of real data and interpolate the real data needed to achieve various quality targets. Our experiments are based on English and single word utterances but the findings generalize to i18n languages and other keyword types.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3084543580 |
source | Free E- Journals |
subjects | Keywords Languages Speech recognition Synthesis |
title | Synth4Kws: Synthesized Speech for User Defined Keyword Spotting in Low Resource Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Synth4Kws:%20Synthesized%20Speech%20for%20User%20Defined%20Keyword%20Spotting%20in%20Low%20Resource%20Environments&rft.jtitle=arXiv.org&rft.au=Pai,%20Zhu&rft.date=2024-07-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3084543580%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084543580&rft_id=info:pmid/&rfr_iscdi=true |