Synth4Kws: Synthesized Speech for User Defined Keyword Spotting in Low Resource Environments

One of the challenges in developing a high quality custom keyword spotting (KWS) model is the lengthy and expensive process of collecting training data covering a wide range of languages, phrases and speaking styles. We introduce Synth4Kws - a framework to leverage Text to Speech (TTS) synthesized d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Pai, Zhu, Agarwal, Dhruuv, Bartel, Jacob W, Partridge, Kurt, Hyun Jin Park, Wang, Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pai, Zhu
Agarwal, Dhruuv
Bartel, Jacob W
Partridge, Kurt
Hyun Jin Park
Wang, Quan
description One of the challenges in developing a high quality custom keyword spotting (KWS) model is the lengthy and expensive process of collecting training data covering a wide range of languages, phrases and speaking styles. We introduce Synth4Kws - a framework to leverage Text to Speech (TTS) synthesized data for custom KWS in different resource settings. With no real data, we found increasing TTS phrase diversity and utterance sampling monotonically improves model performance, as evaluated by EER and AUC metrics over 11k utterances of the speech command dataset. In low resource settings, with 50k real utterances as a baseline, we found using optimal amounts of TTS data can improve EER by 30.1% and AUC by 46.7%. Furthermore, we mix TTS data with varying amounts of real data and interpolate the real data needed to achieve various quality targets. Our experiments are based on English and single word utterances but the findings generalize to i18n languages and other keyword types.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3084543580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084543580</sourcerecordid><originalsourceid>FETCH-proquest_journals_30845435803</originalsourceid><addsrcrecordid>eNqNi80KwjAQhIMgKOo7LHgWYtJo8aoVQU_-3IQiurUpuqnZaNGnt4oP4Gk-5ptpiLbSejiII6VaosdcSCnVaKyM0W2x3zwp5NGy4gl8Edm-8ASbEvGYQ-Y87Bg9zDCzVPdLfFbOf7wLwdIZLMHKVbBGdnd_REjoYb2jK1Lgrmhmhwtj75cd0Z8n2-liUHp3uyOHtKhPVKtUyzgykTax1P-t3rC7Q2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084543580</pqid></control><display><type>article</type><title>Synth4Kws: Synthesized Speech for User Defined Keyword Spotting in Low Resource Environments</title><source>Free E- Journals</source><creator>Pai, Zhu ; Agarwal, Dhruuv ; Bartel, Jacob W ; Partridge, Kurt ; Hyun Jin Park ; Wang, Quan</creator><creatorcontrib>Pai, Zhu ; Agarwal, Dhruuv ; Bartel, Jacob W ; Partridge, Kurt ; Hyun Jin Park ; Wang, Quan</creatorcontrib><description>One of the challenges in developing a high quality custom keyword spotting (KWS) model is the lengthy and expensive process of collecting training data covering a wide range of languages, phrases and speaking styles. We introduce Synth4Kws - a framework to leverage Text to Speech (TTS) synthesized data for custom KWS in different resource settings. With no real data, we found increasing TTS phrase diversity and utterance sampling monotonically improves model performance, as evaluated by EER and AUC metrics over 11k utterances of the speech command dataset. In low resource settings, with 50k real utterances as a baseline, we found using optimal amounts of TTS data can improve EER by 30.1% and AUC by 46.7%. Furthermore, we mix TTS data with varying amounts of real data and interpolate the real data needed to achieve various quality targets. Our experiments are based on English and single word utterances but the findings generalize to i18n languages and other keyword types.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Keywords ; Languages ; Speech recognition ; Synthesis</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Pai, Zhu</creatorcontrib><creatorcontrib>Agarwal, Dhruuv</creatorcontrib><creatorcontrib>Bartel, Jacob W</creatorcontrib><creatorcontrib>Partridge, Kurt</creatorcontrib><creatorcontrib>Hyun Jin Park</creatorcontrib><creatorcontrib>Wang, Quan</creatorcontrib><title>Synth4Kws: Synthesized Speech for User Defined Keyword Spotting in Low Resource Environments</title><title>arXiv.org</title><description>One of the challenges in developing a high quality custom keyword spotting (KWS) model is the lengthy and expensive process of collecting training data covering a wide range of languages, phrases and speaking styles. We introduce Synth4Kws - a framework to leverage Text to Speech (TTS) synthesized data for custom KWS in different resource settings. With no real data, we found increasing TTS phrase diversity and utterance sampling monotonically improves model performance, as evaluated by EER and AUC metrics over 11k utterances of the speech command dataset. In low resource settings, with 50k real utterances as a baseline, we found using optimal amounts of TTS data can improve EER by 30.1% and AUC by 46.7%. Furthermore, we mix TTS data with varying amounts of real data and interpolate the real data needed to achieve various quality targets. Our experiments are based on English and single word utterances but the findings generalize to i18n languages and other keyword types.</description><subject>Keywords</subject><subject>Languages</subject><subject>Speech recognition</subject><subject>Synthesis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi80KwjAQhIMgKOo7LHgWYtJo8aoVQU_-3IQiurUpuqnZaNGnt4oP4Gk-5ptpiLbSejiII6VaosdcSCnVaKyM0W2x3zwp5NGy4gl8Edm-8ASbEvGYQ-Y87Bg9zDCzVPdLfFbOf7wLwdIZLMHKVbBGdnd_REjoYb2jK1Lgrmhmhwtj75cd0Z8n2-liUHp3uyOHtKhPVKtUyzgykTax1P-t3rC7Q2c</recordid><startdate>20240723</startdate><enddate>20240723</enddate><creator>Pai, Zhu</creator><creator>Agarwal, Dhruuv</creator><creator>Bartel, Jacob W</creator><creator>Partridge, Kurt</creator><creator>Hyun Jin Park</creator><creator>Wang, Quan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240723</creationdate><title>Synth4Kws: Synthesized Speech for User Defined Keyword Spotting in Low Resource Environments</title><author>Pai, Zhu ; Agarwal, Dhruuv ; Bartel, Jacob W ; Partridge, Kurt ; Hyun Jin Park ; Wang, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30845435803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Keywords</topic><topic>Languages</topic><topic>Speech recognition</topic><topic>Synthesis</topic><toplevel>online_resources</toplevel><creatorcontrib>Pai, Zhu</creatorcontrib><creatorcontrib>Agarwal, Dhruuv</creatorcontrib><creatorcontrib>Bartel, Jacob W</creatorcontrib><creatorcontrib>Partridge, Kurt</creatorcontrib><creatorcontrib>Hyun Jin Park</creatorcontrib><creatorcontrib>Wang, Quan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pai, Zhu</au><au>Agarwal, Dhruuv</au><au>Bartel, Jacob W</au><au>Partridge, Kurt</au><au>Hyun Jin Park</au><au>Wang, Quan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Synth4Kws: Synthesized Speech for User Defined Keyword Spotting in Low Resource Environments</atitle><jtitle>arXiv.org</jtitle><date>2024-07-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>One of the challenges in developing a high quality custom keyword spotting (KWS) model is the lengthy and expensive process of collecting training data covering a wide range of languages, phrases and speaking styles. We introduce Synth4Kws - a framework to leverage Text to Speech (TTS) synthesized data for custom KWS in different resource settings. With no real data, we found increasing TTS phrase diversity and utterance sampling monotonically improves model performance, as evaluated by EER and AUC metrics over 11k utterances of the speech command dataset. In low resource settings, with 50k real utterances as a baseline, we found using optimal amounts of TTS data can improve EER by 30.1% and AUC by 46.7%. Furthermore, we mix TTS data with varying amounts of real data and interpolate the real data needed to achieve various quality targets. Our experiments are based on English and single word utterances but the findings generalize to i18n languages and other keyword types.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3084543580
source Free E- Journals
subjects Keywords
Languages
Speech recognition
Synthesis
title Synth4Kws: Synthesized Speech for User Defined Keyword Spotting in Low Resource Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Synth4Kws:%20Synthesized%20Speech%20for%20User%20Defined%20Keyword%20Spotting%20in%20Low%20Resource%20Environments&rft.jtitle=arXiv.org&rft.au=Pai,%20Zhu&rft.date=2024-07-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3084543580%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084543580&rft_id=info:pmid/&rfr_iscdi=true