A new parameterization of the DFT/CIS method with applications to core-level spectroscopy
Time-dependent density functional theory (TD-DFT) within a restricted excitation space is an efficient means to compute core-level excitation energies using only a small subset of the occupied orbitals. However, core-to-valence excitation energies are significantly underestimated when standard excha...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2024-07, Vol.161 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 161 |
creator | Mandal, Aniket Berquist, Eric J. Herbert, John M. |
description | Time-dependent density functional theory (TD-DFT) within a restricted excitation space is an efficient means to compute core-level excitation energies using only a small subset of the occupied orbitals. However, core-to-valence excitation energies are significantly underestimated when standard exchange–correlation functionals are used, which is partly traceable to systemic issues with TD-DFT’s description of Rydberg and charge-transfer excited states. To mitigate this, we have implemented an empirically modified combination of configuration interaction with single substitutions (CIS) based on Kohn–Sham orbitals, which is known as “DFT/CIS.” This semi-empirical approach is well-suited for simulating x-ray near-edge spectra, as it contains sufficient exact exchange to model charge-transfer excitations yet retains DFT’s low-cost description of dynamical electron correlation. Empirical corrections to the matrix elements enable semi-quantitative simulation of near-edge x-ray spectra without the need for significant a posteriori shifts; this should be useful in complex molecules and materials with multiple overlapping x-ray edges. Parameter optimization for use with a specific range-separated hybrid functional makes this a black-box method intended for both core and valence spectroscopy. Results herein demonstrate that realistic K-edge absorption and emission spectra can be obtained for second- and third-row elements and 3d transition metals, with promising results for L-edge spectra as well. DFT/CIS calculations require absolute shifts that are considerably smaller than what is typical in TD-DFT. |
doi_str_mv | 10.1063/5.0220535 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3084524381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084771152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-c1730e5d01a26dfae0aa24608147352c23f37f51040450c1abac935068785f2d3</originalsourceid><addsrcrecordid>eNp90LFOwzAQBmALgWgpDLwAssQCSGnPdhwnY1UoVKrEQBmYItdx1FRJHGyHqjw9oS0MDEw33Kdfdz9ClwSGBCI24kOgFDjjR6hPIE4CESVwjPoAlARJBFEPnTm3BgAiaHiKeiwBTmIW9tHbGNd6gxtpZaW9tsWn9IWpscmxX2l8P12MJrMX3O1WJsObwq-wbJqyUDvmsDdYGauDUn_oErtGK2-NU6bZnqOTXJZOXxzmAL1OHxaTp2D-_DibjOeBooL5QBHBQPMMiKRRlksNUtIwgpiEgnGqKMuZyDmBEEIOisilVAnjEMUi5jnN2ADd7HMba95b7XxaFU7pspS1Nq1LGcShEIRw2tHrP3RtWlt31-0UpyGLSadu90p1nzir87SxRSXtNiWQfved8vTQd2evDontstLZr_wpuAN3e-BU4Xed_ZP2BeEhhUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084524381</pqid></control><display><type>article</type><title>A new parameterization of the DFT/CIS method with applications to core-level spectroscopy</title><source>AIP Journals Complete</source><creator>Mandal, Aniket ; Berquist, Eric J. ; Herbert, John M.</creator><creatorcontrib>Mandal, Aniket ; Berquist, Eric J. ; Herbert, John M.</creatorcontrib><description>Time-dependent density functional theory (TD-DFT) within a restricted excitation space is an efficient means to compute core-level excitation energies using only a small subset of the occupied orbitals. However, core-to-valence excitation energies are significantly underestimated when standard exchange–correlation functionals are used, which is partly traceable to systemic issues with TD-DFT’s description of Rydberg and charge-transfer excited states. To mitigate this, we have implemented an empirically modified combination of configuration interaction with single substitutions (CIS) based on Kohn–Sham orbitals, which is known as “DFT/CIS.” This semi-empirical approach is well-suited for simulating x-ray near-edge spectra, as it contains sufficient exact exchange to model charge-transfer excitations yet retains DFT’s low-cost description of dynamical electron correlation. Empirical corrections to the matrix elements enable semi-quantitative simulation of near-edge x-ray spectra without the need for significant a posteriori shifts; this should be useful in complex molecules and materials with multiple overlapping x-ray edges. Parameter optimization for use with a specific range-separated hybrid functional makes this a black-box method intended for both core and valence spectroscopy. Results herein demonstrate that realistic K-edge absorption and emission spectra can be obtained for second- and third-row elements and 3d transition metals, with promising results for L-edge spectra as well. DFT/CIS calculations require absolute shifts that are considerably smaller than what is typical in TD-DFT.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0220535</identifier><identifier>PMID: 39051834</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Charge exchange ; Configuration interaction ; Density functional theory ; Emission spectra ; Excitation spectra ; Orbitals ; Parameterization ; Spectroscopy ; Spectrum analysis ; Transition metals ; X ray spectra</subject><ispartof>The Journal of chemical physics, 2024-07, Vol.161 (4)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-c1730e5d01a26dfae0aa24608147352c23f37f51040450c1abac935068785f2d3</cites><orcidid>0009-0000-8880-0122 ; 0000-0001-8186-9522 ; 0000-0002-1663-2278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0220535$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39051834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandal, Aniket</creatorcontrib><creatorcontrib>Berquist, Eric J.</creatorcontrib><creatorcontrib>Herbert, John M.</creatorcontrib><title>A new parameterization of the DFT/CIS method with applications to core-level spectroscopy</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Time-dependent density functional theory (TD-DFT) within a restricted excitation space is an efficient means to compute core-level excitation energies using only a small subset of the occupied orbitals. However, core-to-valence excitation energies are significantly underestimated when standard exchange–correlation functionals are used, which is partly traceable to systemic issues with TD-DFT’s description of Rydberg and charge-transfer excited states. To mitigate this, we have implemented an empirically modified combination of configuration interaction with single substitutions (CIS) based on Kohn–Sham orbitals, which is known as “DFT/CIS.” This semi-empirical approach is well-suited for simulating x-ray near-edge spectra, as it contains sufficient exact exchange to model charge-transfer excitations yet retains DFT’s low-cost description of dynamical electron correlation. Empirical corrections to the matrix elements enable semi-quantitative simulation of near-edge x-ray spectra without the need for significant a posteriori shifts; this should be useful in complex molecules and materials with multiple overlapping x-ray edges. Parameter optimization for use with a specific range-separated hybrid functional makes this a black-box method intended for both core and valence spectroscopy. Results herein demonstrate that realistic K-edge absorption and emission spectra can be obtained for second- and third-row elements and 3d transition metals, with promising results for L-edge spectra as well. DFT/CIS calculations require absolute shifts that are considerably smaller than what is typical in TD-DFT.</description><subject>Charge exchange</subject><subject>Configuration interaction</subject><subject>Density functional theory</subject><subject>Emission spectra</subject><subject>Excitation spectra</subject><subject>Orbitals</subject><subject>Parameterization</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Transition metals</subject><subject>X ray spectra</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90LFOwzAQBmALgWgpDLwAssQCSGnPdhwnY1UoVKrEQBmYItdx1FRJHGyHqjw9oS0MDEw33Kdfdz9ClwSGBCI24kOgFDjjR6hPIE4CESVwjPoAlARJBFEPnTm3BgAiaHiKeiwBTmIW9tHbGNd6gxtpZaW9tsWn9IWpscmxX2l8P12MJrMX3O1WJsObwq-wbJqyUDvmsDdYGauDUn_oErtGK2-NU6bZnqOTXJZOXxzmAL1OHxaTp2D-_DibjOeBooL5QBHBQPMMiKRRlksNUtIwgpiEgnGqKMuZyDmBEEIOisilVAnjEMUi5jnN2ADd7HMba95b7XxaFU7pspS1Nq1LGcShEIRw2tHrP3RtWlt31-0UpyGLSadu90p1nzir87SxRSXtNiWQfved8vTQd2evDontstLZr_wpuAN3e-BU4Xed_ZP2BeEhhUM</recordid><startdate>20240728</startdate><enddate>20240728</enddate><creator>Mandal, Aniket</creator><creator>Berquist, Eric J.</creator><creator>Herbert, John M.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-8880-0122</orcidid><orcidid>https://orcid.org/0000-0001-8186-9522</orcidid><orcidid>https://orcid.org/0000-0002-1663-2278</orcidid></search><sort><creationdate>20240728</creationdate><title>A new parameterization of the DFT/CIS method with applications to core-level spectroscopy</title><author>Mandal, Aniket ; Berquist, Eric J. ; Herbert, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-c1730e5d01a26dfae0aa24608147352c23f37f51040450c1abac935068785f2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge exchange</topic><topic>Configuration interaction</topic><topic>Density functional theory</topic><topic>Emission spectra</topic><topic>Excitation spectra</topic><topic>Orbitals</topic><topic>Parameterization</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Transition metals</topic><topic>X ray spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandal, Aniket</creatorcontrib><creatorcontrib>Berquist, Eric J.</creatorcontrib><creatorcontrib>Herbert, John M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandal, Aniket</au><au>Berquist, Eric J.</au><au>Herbert, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new parameterization of the DFT/CIS method with applications to core-level spectroscopy</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-07-28</date><risdate>2024</risdate><volume>161</volume><issue>4</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Time-dependent density functional theory (TD-DFT) within a restricted excitation space is an efficient means to compute core-level excitation energies using only a small subset of the occupied orbitals. However, core-to-valence excitation energies are significantly underestimated when standard exchange–correlation functionals are used, which is partly traceable to systemic issues with TD-DFT’s description of Rydberg and charge-transfer excited states. To mitigate this, we have implemented an empirically modified combination of configuration interaction with single substitutions (CIS) based on Kohn–Sham orbitals, which is known as “DFT/CIS.” This semi-empirical approach is well-suited for simulating x-ray near-edge spectra, as it contains sufficient exact exchange to model charge-transfer excitations yet retains DFT’s low-cost description of dynamical electron correlation. Empirical corrections to the matrix elements enable semi-quantitative simulation of near-edge x-ray spectra without the need for significant a posteriori shifts; this should be useful in complex molecules and materials with multiple overlapping x-ray edges. Parameter optimization for use with a specific range-separated hybrid functional makes this a black-box method intended for both core and valence spectroscopy. Results herein demonstrate that realistic K-edge absorption and emission spectra can be obtained for second- and third-row elements and 3d transition metals, with promising results for L-edge spectra as well. DFT/CIS calculations require absolute shifts that are considerably smaller than what is typical in TD-DFT.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39051834</pmid><doi>10.1063/5.0220535</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0000-8880-0122</orcidid><orcidid>https://orcid.org/0000-0001-8186-9522</orcidid><orcidid>https://orcid.org/0000-0002-1663-2278</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2024-07, Vol.161 (4) |
issn | 0021-9606 1089-7690 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_3084524381 |
source | AIP Journals Complete |
subjects | Charge exchange Configuration interaction Density functional theory Emission spectra Excitation spectra Orbitals Parameterization Spectroscopy Spectrum analysis Transition metals X ray spectra |
title | A new parameterization of the DFT/CIS method with applications to core-level spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20parameterization%20of%20the%20DFT/CIS%20method%20with%20applications%20to%20core-level%20spectroscopy&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Mandal,%20Aniket&rft.date=2024-07-28&rft.volume=161&rft.issue=4&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0220535&rft_dat=%3Cproquest_cross%3E3084771152%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084524381&rft_id=info:pmid/39051834&rfr_iscdi=true |