Optimal item pricing in online combinatorial auctions

We consider a fundamental pricing problem in combinatorial auctions. We are given a set of indivisible items and a set of buyers with randomly drawn monotone valuations over subsets of items. A decision-maker sets item prices and then the buyers make sequential purchasing decisions, taking their fav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2024-07, Vol.206 (1-2), p.429-460
Hauptverfasser: Correa, José, Cristi, Andrés, Fielbaum, Andrés, Pollner, Tristan, Weinberg, S. Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 460
container_issue 1-2
container_start_page 429
container_title Mathematical programming
container_volume 206
creator Correa, José
Cristi, Andrés
Fielbaum, Andrés
Pollner, Tristan
Weinberg, S. Matthew
description We consider a fundamental pricing problem in combinatorial auctions. We are given a set of indivisible items and a set of buyers with randomly drawn monotone valuations over subsets of items. A decision-maker sets item prices and then the buyers make sequential purchasing decisions, taking their favorite set among the remaining items. We parametrize an instance by d , the size of the largest set a buyer may want. Our main result asserts that there exist prices such that the expected (over the random valuations) welfare of the allocation they induce is at least a factor 1 / ( d + 1 ) times the expected optimal welfare in hindsight. Moreover, we prove that this bound is tight. Thus, our result not only improves upon the 1 / ( 4 d - 2 ) bound of Dütting et al., but also settles the approximation that can be achieved by using item prices. The existence of these prices follows from the existence of a fixed point of a related mapping, and therefore, it is non-constructive. However, we show how to compute such a fixed point in polynomial time, even if we only have sample access to the valuation distributions. We provide additional results for the special case when buyers’ valuations are known (but a posted-price mechanism is still desired), and an improved impossibility result for the special case of prophet inequalities for bipartite matching.
doi_str_mv 10.1007/s10107-023-02027-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3084373314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084373314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ccf7f27505cab4a2b56dd33d642de6eb6ba6ead67e47a169068a852016e4c7c03</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jN62ZcSvEFhW50HTKZTEnpJDWZLvz3Rkdw5-JyNuecy_kIuWZwywD0XWHAQFPgoh5wTfkJWTApkEqUeEoWAFxRhQzOyUUpOwBgom0XRG0OUxjtvgmTH5tDDi7EbRNik-I-RN-4NHYh2inlUE326KaQYrkkZ4PdF3_1q0vy_vT4tnqh683z6-phTR3XMFHnBj1wrUA520nLO4V9L0SPkvcefYedRW971F5qy_AesLWt4sDQS6cdiCW5mXsPOX0cfZnMLh1zrC-NgFYKLUQduSR8drmcSsl-MHXHaPOnYWC-8ZgZj6l4zA8ew2tIzKFSzXHr81_1P6kv5axnaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084373314</pqid></control><display><type>article</type><title>Optimal item pricing in online combinatorial auctions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Correa, José ; Cristi, Andrés ; Fielbaum, Andrés ; Pollner, Tristan ; Weinberg, S. Matthew</creator><creatorcontrib>Correa, José ; Cristi, Andrés ; Fielbaum, Andrés ; Pollner, Tristan ; Weinberg, S. Matthew</creatorcontrib><description>We consider a fundamental pricing problem in combinatorial auctions. We are given a set of indivisible items and a set of buyers with randomly drawn monotone valuations over subsets of items. A decision-maker sets item prices and then the buyers make sequential purchasing decisions, taking their favorite set among the remaining items. We parametrize an instance by d , the size of the largest set a buyer may want. Our main result asserts that there exist prices such that the expected (over the random valuations) welfare of the allocation they induce is at least a factor 1 / ( d + 1 ) times the expected optimal welfare in hindsight. Moreover, we prove that this bound is tight. Thus, our result not only improves upon the 1 / ( 4 d - 2 ) bound of Dütting et al., but also settles the approximation that can be achieved by using item prices. The existence of these prices follows from the existence of a fixed point of a related mapping, and therefore, it is non-constructive. However, we show how to compute such a fixed point in polynomial time, even if we only have sample access to the valuation distributions. We provide additional results for the special case when buyers’ valuations are known (but a posted-price mechanism is still desired), and an improved impossibility result for the special case of prophet inequalities for bipartite matching.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-023-02027-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Combinatorial analysis ; Combinatorics ; Fixed points (mathematics) ; Full Length Paper ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Polynomials ; Prices ; Pricing ; Theoretical</subject><ispartof>Mathematical programming, 2024-07, Vol.206 (1-2), p.429-460</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ccf7f27505cab4a2b56dd33d642de6eb6ba6ead67e47a169068a852016e4c7c03</cites><orcidid>0000-0002-3012-7622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-023-02027-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-023-02027-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Correa, José</creatorcontrib><creatorcontrib>Cristi, Andrés</creatorcontrib><creatorcontrib>Fielbaum, Andrés</creatorcontrib><creatorcontrib>Pollner, Tristan</creatorcontrib><creatorcontrib>Weinberg, S. Matthew</creatorcontrib><title>Optimal item pricing in online combinatorial auctions</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>We consider a fundamental pricing problem in combinatorial auctions. We are given a set of indivisible items and a set of buyers with randomly drawn monotone valuations over subsets of items. A decision-maker sets item prices and then the buyers make sequential purchasing decisions, taking their favorite set among the remaining items. We parametrize an instance by d , the size of the largest set a buyer may want. Our main result asserts that there exist prices such that the expected (over the random valuations) welfare of the allocation they induce is at least a factor 1 / ( d + 1 ) times the expected optimal welfare in hindsight. Moreover, we prove that this bound is tight. Thus, our result not only improves upon the 1 / ( 4 d - 2 ) bound of Dütting et al., but also settles the approximation that can be achieved by using item prices. The existence of these prices follows from the existence of a fixed point of a related mapping, and therefore, it is non-constructive. However, we show how to compute such a fixed point in polynomial time, even if we only have sample access to the valuation distributions. We provide additional results for the special case when buyers’ valuations are known (but a posted-price mechanism is still desired), and an improved impossibility result for the special case of prophet inequalities for bipartite matching.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Fixed points (mathematics)</subject><subject>Full Length Paper</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><subject>Prices</subject><subject>Pricing</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jN62ZcSvEFhW50HTKZTEnpJDWZLvz3Rkdw5-JyNuecy_kIuWZwywD0XWHAQFPgoh5wTfkJWTApkEqUeEoWAFxRhQzOyUUpOwBgom0XRG0OUxjtvgmTH5tDDi7EbRNik-I-RN-4NHYh2inlUE326KaQYrkkZ4PdF3_1q0vy_vT4tnqh683z6-phTR3XMFHnBj1wrUA520nLO4V9L0SPkvcefYedRW971F5qy_AesLWt4sDQS6cdiCW5mXsPOX0cfZnMLh1zrC-NgFYKLUQduSR8drmcSsl-MHXHaPOnYWC-8ZgZj6l4zA8ew2tIzKFSzXHr81_1P6kv5axnaQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Correa, José</creator><creator>Cristi, Andrés</creator><creator>Fielbaum, Andrés</creator><creator>Pollner, Tristan</creator><creator>Weinberg, S. Matthew</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3012-7622</orcidid></search><sort><creationdate>20240701</creationdate><title>Optimal item pricing in online combinatorial auctions</title><author>Correa, José ; Cristi, Andrés ; Fielbaum, Andrés ; Pollner, Tristan ; Weinberg, S. Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ccf7f27505cab4a2b56dd33d642de6eb6ba6ead67e47a169068a852016e4c7c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Fixed points (mathematics)</topic><topic>Full Length Paper</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><topic>Prices</topic><topic>Pricing</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Correa, José</creatorcontrib><creatorcontrib>Cristi, Andrés</creatorcontrib><creatorcontrib>Fielbaum, Andrés</creatorcontrib><creatorcontrib>Pollner, Tristan</creatorcontrib><creatorcontrib>Weinberg, S. Matthew</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Correa, José</au><au>Cristi, Andrés</au><au>Fielbaum, Andrés</au><au>Pollner, Tristan</au><au>Weinberg, S. Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal item pricing in online combinatorial auctions</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>206</volume><issue>1-2</issue><spage>429</spage><epage>460</epage><pages>429-460</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>We consider a fundamental pricing problem in combinatorial auctions. We are given a set of indivisible items and a set of buyers with randomly drawn monotone valuations over subsets of items. A decision-maker sets item prices and then the buyers make sequential purchasing decisions, taking their favorite set among the remaining items. We parametrize an instance by d , the size of the largest set a buyer may want. Our main result asserts that there exist prices such that the expected (over the random valuations) welfare of the allocation they induce is at least a factor 1 / ( d + 1 ) times the expected optimal welfare in hindsight. Moreover, we prove that this bound is tight. Thus, our result not only improves upon the 1 / ( 4 d - 2 ) bound of Dütting et al., but also settles the approximation that can be achieved by using item prices. The existence of these prices follows from the existence of a fixed point of a related mapping, and therefore, it is non-constructive. However, we show how to compute such a fixed point in polynomial time, even if we only have sample access to the valuation distributions. We provide additional results for the special case when buyers’ valuations are known (but a posted-price mechanism is still desired), and an improved impossibility result for the special case of prophet inequalities for bipartite matching.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-023-02027-2</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-3012-7622</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2024-07, Vol.206 (1-2), p.429-460
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_journals_3084373314
source SpringerLink Journals - AutoHoldings
subjects Calculus of Variations and Optimal Control
Optimization
Combinatorial analysis
Combinatorics
Fixed points (mathematics)
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Polynomials
Prices
Pricing
Theoretical
title Optimal item pricing in online combinatorial auctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20item%20pricing%20in%20online%20combinatorial%20auctions&rft.jtitle=Mathematical%20programming&rft.au=Correa,%20Jos%C3%A9&rft.date=2024-07-01&rft.volume=206&rft.issue=1-2&rft.spage=429&rft.epage=460&rft.pages=429-460&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-023-02027-2&rft_dat=%3Cproquest_cross%3E3084373314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084373314&rft_id=info:pmid/&rfr_iscdi=true