Optimal item pricing in online combinatorial auctions
We consider a fundamental pricing problem in combinatorial auctions. We are given a set of indivisible items and a set of buyers with randomly drawn monotone valuations over subsets of items. A decision-maker sets item prices and then the buyers make sequential purchasing decisions, taking their fav...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2024-07, Vol.206 (1-2), p.429-460 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 460 |
---|---|
container_issue | 1-2 |
container_start_page | 429 |
container_title | Mathematical programming |
container_volume | 206 |
creator | Correa, José Cristi, Andrés Fielbaum, Andrés Pollner, Tristan Weinberg, S. Matthew |
description | We consider a fundamental pricing problem in combinatorial auctions. We are given a set of indivisible items and a set of buyers with randomly drawn monotone valuations over subsets of items. A decision-maker sets item prices and then the buyers make sequential purchasing decisions, taking their favorite set among the remaining items. We parametrize an instance by
d
, the size of the largest set a buyer may want. Our main result asserts that there exist prices such that the expected (over the random valuations) welfare of the allocation they induce is at least a factor
1
/
(
d
+
1
)
times the expected optimal welfare in hindsight. Moreover, we prove that this bound is tight. Thus, our result not only improves upon the
1
/
(
4
d
-
2
)
bound of Dütting et al., but also settles the approximation that can be achieved by using item prices. The existence of these prices follows from the existence of a fixed point of a related mapping, and therefore, it is non-constructive. However, we show how to compute such a fixed point in polynomial time, even if we only have sample access to the valuation distributions. We provide additional results for the special case when buyers’ valuations are known (but a posted-price mechanism is still desired), and an improved impossibility result for the special case of prophet inequalities for bipartite matching. |
doi_str_mv | 10.1007/s10107-023-02027-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3084373314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084373314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ccf7f27505cab4a2b56dd33d642de6eb6ba6ead67e47a169068a852016e4c7c03</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jN62ZcSvEFhW50HTKZTEnpJDWZLvz3Rkdw5-JyNuecy_kIuWZwywD0XWHAQFPgoh5wTfkJWTApkEqUeEoWAFxRhQzOyUUpOwBgom0XRG0OUxjtvgmTH5tDDi7EbRNik-I-RN-4NHYh2inlUE326KaQYrkkZ4PdF3_1q0vy_vT4tnqh683z6-phTR3XMFHnBj1wrUA520nLO4V9L0SPkvcefYedRW971F5qy_AesLWt4sDQS6cdiCW5mXsPOX0cfZnMLh1zrC-NgFYKLUQduSR8drmcSsl-MHXHaPOnYWC-8ZgZj6l4zA8ew2tIzKFSzXHr81_1P6kv5axnaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084373314</pqid></control><display><type>article</type><title>Optimal item pricing in online combinatorial auctions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Correa, José ; Cristi, Andrés ; Fielbaum, Andrés ; Pollner, Tristan ; Weinberg, S. Matthew</creator><creatorcontrib>Correa, José ; Cristi, Andrés ; Fielbaum, Andrés ; Pollner, Tristan ; Weinberg, S. Matthew</creatorcontrib><description>We consider a fundamental pricing problem in combinatorial auctions. We are given a set of indivisible items and a set of buyers with randomly drawn monotone valuations over subsets of items. A decision-maker sets item prices and then the buyers make sequential purchasing decisions, taking their favorite set among the remaining items. We parametrize an instance by
d
, the size of the largest set a buyer may want. Our main result asserts that there exist prices such that the expected (over the random valuations) welfare of the allocation they induce is at least a factor
1
/
(
d
+
1
)
times the expected optimal welfare in hindsight. Moreover, we prove that this bound is tight. Thus, our result not only improves upon the
1
/
(
4
d
-
2
)
bound of Dütting et al., but also settles the approximation that can be achieved by using item prices. The existence of these prices follows from the existence of a fixed point of a related mapping, and therefore, it is non-constructive. However, we show how to compute such a fixed point in polynomial time, even if we only have sample access to the valuation distributions. We provide additional results for the special case when buyers’ valuations are known (but a posted-price mechanism is still desired), and an improved impossibility result for the special case of prophet inequalities for bipartite matching.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-023-02027-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Combinatorial analysis ; Combinatorics ; Fixed points (mathematics) ; Full Length Paper ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Polynomials ; Prices ; Pricing ; Theoretical</subject><ispartof>Mathematical programming, 2024-07, Vol.206 (1-2), p.429-460</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ccf7f27505cab4a2b56dd33d642de6eb6ba6ead67e47a169068a852016e4c7c03</cites><orcidid>0000-0002-3012-7622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-023-02027-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-023-02027-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Correa, José</creatorcontrib><creatorcontrib>Cristi, Andrés</creatorcontrib><creatorcontrib>Fielbaum, Andrés</creatorcontrib><creatorcontrib>Pollner, Tristan</creatorcontrib><creatorcontrib>Weinberg, S. Matthew</creatorcontrib><title>Optimal item pricing in online combinatorial auctions</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>We consider a fundamental pricing problem in combinatorial auctions. We are given a set of indivisible items and a set of buyers with randomly drawn monotone valuations over subsets of items. A decision-maker sets item prices and then the buyers make sequential purchasing decisions, taking their favorite set among the remaining items. We parametrize an instance by
d
, the size of the largest set a buyer may want. Our main result asserts that there exist prices such that the expected (over the random valuations) welfare of the allocation they induce is at least a factor
1
/
(
d
+
1
)
times the expected optimal welfare in hindsight. Moreover, we prove that this bound is tight. Thus, our result not only improves upon the
1
/
(
4
d
-
2
)
bound of Dütting et al., but also settles the approximation that can be achieved by using item prices. The existence of these prices follows from the existence of a fixed point of a related mapping, and therefore, it is non-constructive. However, we show how to compute such a fixed point in polynomial time, even if we only have sample access to the valuation distributions. We provide additional results for the special case when buyers’ valuations are known (but a posted-price mechanism is still desired), and an improved impossibility result for the special case of prophet inequalities for bipartite matching.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Fixed points (mathematics)</subject><subject>Full Length Paper</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><subject>Prices</subject><subject>Pricing</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jN62ZcSvEFhW50HTKZTEnpJDWZLvz3Rkdw5-JyNuecy_kIuWZwywD0XWHAQFPgoh5wTfkJWTApkEqUeEoWAFxRhQzOyUUpOwBgom0XRG0OUxjtvgmTH5tDDi7EbRNik-I-RN-4NHYh2inlUE326KaQYrkkZ4PdF3_1q0vy_vT4tnqh683z6-phTR3XMFHnBj1wrUA520nLO4V9L0SPkvcefYedRW971F5qy_AesLWt4sDQS6cdiCW5mXsPOX0cfZnMLh1zrC-NgFYKLUQduSR8drmcSsl-MHXHaPOnYWC-8ZgZj6l4zA8ew2tIzKFSzXHr81_1P6kv5axnaQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Correa, José</creator><creator>Cristi, Andrés</creator><creator>Fielbaum, Andrés</creator><creator>Pollner, Tristan</creator><creator>Weinberg, S. Matthew</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3012-7622</orcidid></search><sort><creationdate>20240701</creationdate><title>Optimal item pricing in online combinatorial auctions</title><author>Correa, José ; Cristi, Andrés ; Fielbaum, Andrés ; Pollner, Tristan ; Weinberg, S. Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ccf7f27505cab4a2b56dd33d642de6eb6ba6ead67e47a169068a852016e4c7c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Fixed points (mathematics)</topic><topic>Full Length Paper</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><topic>Prices</topic><topic>Pricing</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Correa, José</creatorcontrib><creatorcontrib>Cristi, Andrés</creatorcontrib><creatorcontrib>Fielbaum, Andrés</creatorcontrib><creatorcontrib>Pollner, Tristan</creatorcontrib><creatorcontrib>Weinberg, S. Matthew</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Correa, José</au><au>Cristi, Andrés</au><au>Fielbaum, Andrés</au><au>Pollner, Tristan</au><au>Weinberg, S. Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal item pricing in online combinatorial auctions</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>206</volume><issue>1-2</issue><spage>429</spage><epage>460</epage><pages>429-460</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>We consider a fundamental pricing problem in combinatorial auctions. We are given a set of indivisible items and a set of buyers with randomly drawn monotone valuations over subsets of items. A decision-maker sets item prices and then the buyers make sequential purchasing decisions, taking their favorite set among the remaining items. We parametrize an instance by
d
, the size of the largest set a buyer may want. Our main result asserts that there exist prices such that the expected (over the random valuations) welfare of the allocation they induce is at least a factor
1
/
(
d
+
1
)
times the expected optimal welfare in hindsight. Moreover, we prove that this bound is tight. Thus, our result not only improves upon the
1
/
(
4
d
-
2
)
bound of Dütting et al., but also settles the approximation that can be achieved by using item prices. The existence of these prices follows from the existence of a fixed point of a related mapping, and therefore, it is non-constructive. However, we show how to compute such a fixed point in polynomial time, even if we only have sample access to the valuation distributions. We provide additional results for the special case when buyers’ valuations are known (but a posted-price mechanism is still desired), and an improved impossibility result for the special case of prophet inequalities for bipartite matching.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-023-02027-2</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-3012-7622</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 2024-07, Vol.206 (1-2), p.429-460 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_proquest_journals_3084373314 |
source | SpringerLink Journals - AutoHoldings |
subjects | Calculus of Variations and Optimal Control Optimization Combinatorial analysis Combinatorics Fixed points (mathematics) Full Length Paper Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Polynomials Prices Pricing Theoretical |
title | Optimal item pricing in online combinatorial auctions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20item%20pricing%20in%20online%20combinatorial%20auctions&rft.jtitle=Mathematical%20programming&rft.au=Correa,%20Jos%C3%A9&rft.date=2024-07-01&rft.volume=206&rft.issue=1-2&rft.spage=429&rft.epage=460&rft.pages=429-460&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-023-02027-2&rft_dat=%3Cproquest_cross%3E3084373314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084373314&rft_id=info:pmid/&rfr_iscdi=true |