Total dual dyadicness and dyadic generating sets

A vector is dyadic if each of its entries is a dyadic rational number, i.e. of the form a 2 k for some integers a ,  k with k ≥ 0 . A linear system A x ≤ b with integral data is totally dual dyadic if whenever min { b ⊤ y : A ⊤ y = w , y ≥ 0 } for w integral, has an optimal solution, it has a dyadic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2024-07, Vol.206 (1-2), p.125-143
Hauptverfasser: Abdi, Ahmad, Cornuéjols, Gérard, Guenin, Bertrand, Tunçel, Levent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 1-2
container_start_page 125
container_title Mathematical programming
container_volume 206
creator Abdi, Ahmad
Cornuéjols, Gérard
Guenin, Bertrand
Tunçel, Levent
description A vector is dyadic if each of its entries is a dyadic rational number, i.e. of the form a 2 k for some integers a ,  k with k ≥ 0 . A linear system A x ≤ b with integral data is totally dual dyadic if whenever min { b ⊤ y : A ⊤ y = w , y ≥ 0 } for w integral, has an optimal solution, it has a dyadic optimal solution. In this paper, we study total dual dyadicness, and give a co-NP characterization of it in terms of dyadic generating sets for cones and subspaces , the former being the dyadic analogue of Hilbert bases , and the latter a polynomial-time recognizable relaxation of the former. Along the way, we see some surprising turn of events when compared to total dual integrality, primarily led by the density of the dyadic rationals. Our study ultimately leads to a better understanding of total dual integrality and polyhedral integrality. We see examples from dyadic matroids, T -joins, cycles, and perfect matchings of a graph.
doi_str_mv 10.1007/s10107-023-01967-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3084373301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084373301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3cf0e27931c72759f1a247eecc667f00d801f3f62fd93c51aec6a6e858bd26583</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hMZjfJHqX4Dwpe6jnE7KS01N2abA_tp3frFrx5mWHgvTe8nxC3CPcIYB4yAoKRoEgC1trIw5mYYElalrrU52ICoCpZaYRLcZXzGgCQrJ0IWHS93xTN7jj2vlmFlnMufNuczmLJLSffr9plkbnP1-Ii-k3mm9Oeio_np8XsVc7fX95mj3MZlIFeUojAytSEwShT1RG9Kg1zCFqbCNBYwEhRq9jUFCr0HLTXbCv72ShdWZqKuzF3m7rvHeferbtdaoeXjsCWZIiGClOhRlVIXc6Jo9um1ZdPe4fgjmTcSMYNZNwvGXcYTDSa8iBul5z-ov9x_QAfNGWi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084373301</pqid></control><display><type>article</type><title>Total dual dyadicness and dyadic generating sets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Abdi, Ahmad ; Cornuéjols, Gérard ; Guenin, Bertrand ; Tunçel, Levent</creator><creatorcontrib>Abdi, Ahmad ; Cornuéjols, Gérard ; Guenin, Bertrand ; Tunçel, Levent</creatorcontrib><description>A vector is dyadic if each of its entries is a dyadic rational number, i.e. of the form a 2 k for some integers a ,  k with k ≥ 0 . A linear system A x ≤ b with integral data is totally dual dyadic if whenever min { b ⊤ y : A ⊤ y = w , y ≥ 0 } for w integral, has an optimal solution, it has a dyadic optimal solution. In this paper, we study total dual dyadicness, and give a co-NP characterization of it in terms of dyadic generating sets for cones and subspaces , the former being the dyadic analogue of Hilbert bases , and the latter a polynomial-time recognizable relaxation of the former. Along the way, we see some surprising turn of events when compared to total dual integrality, primarily led by the density of the dyadic rationals. Our study ultimately leads to a better understanding of total dual integrality and polyhedral integrality. We see examples from dyadic matroids, T -joins, cycles, and perfect matchings of a graph.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-023-01967-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Full Length Paper ; Linear systems ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Polynomials ; Subspaces ; Theoretical</subject><ispartof>Mathematical programming, 2024-07, Vol.206 (1-2), p.125-143</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3cf0e27931c72759f1a247eecc667f00d801f3f62fd93c51aec6a6e858bd26583</cites><orcidid>0000-0002-3976-1021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-023-01967-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-023-01967-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Abdi, Ahmad</creatorcontrib><creatorcontrib>Cornuéjols, Gérard</creatorcontrib><creatorcontrib>Guenin, Bertrand</creatorcontrib><creatorcontrib>Tunçel, Levent</creatorcontrib><title>Total dual dyadicness and dyadic generating sets</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>A vector is dyadic if each of its entries is a dyadic rational number, i.e. of the form a 2 k for some integers a ,  k with k ≥ 0 . A linear system A x ≤ b with integral data is totally dual dyadic if whenever min { b ⊤ y : A ⊤ y = w , y ≥ 0 } for w integral, has an optimal solution, it has a dyadic optimal solution. In this paper, we study total dual dyadicness, and give a co-NP characterization of it in terms of dyadic generating sets for cones and subspaces , the former being the dyadic analogue of Hilbert bases , and the latter a polynomial-time recognizable relaxation of the former. Along the way, we see some surprising turn of events when compared to total dual integrality, primarily led by the density of the dyadic rationals. Our study ultimately leads to a better understanding of total dual integrality and polyhedral integrality. We see examples from dyadic matroids, T -joins, cycles, and perfect matchings of a graph.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Full Length Paper</subject><subject>Linear systems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><subject>Subspaces</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hMZjfJHqX4Dwpe6jnE7KS01N2abA_tp3frFrx5mWHgvTe8nxC3CPcIYB4yAoKRoEgC1trIw5mYYElalrrU52ICoCpZaYRLcZXzGgCQrJ0IWHS93xTN7jj2vlmFlnMufNuczmLJLSffr9plkbnP1-Ii-k3mm9Oeio_np8XsVc7fX95mj3MZlIFeUojAytSEwShT1RG9Kg1zCFqbCNBYwEhRq9jUFCr0HLTXbCv72ShdWZqKuzF3m7rvHeferbtdaoeXjsCWZIiGClOhRlVIXc6Jo9um1ZdPe4fgjmTcSMYNZNwvGXcYTDSa8iBul5z-ov9x_QAfNGWi</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Abdi, Ahmad</creator><creator>Cornuéjols, Gérard</creator><creator>Guenin, Bertrand</creator><creator>Tunçel, Levent</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3976-1021</orcidid></search><sort><creationdate>20240701</creationdate><title>Total dual dyadicness and dyadic generating sets</title><author>Abdi, Ahmad ; Cornuéjols, Gérard ; Guenin, Bertrand ; Tunçel, Levent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3cf0e27931c72759f1a247eecc667f00d801f3f62fd93c51aec6a6e858bd26583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Full Length Paper</topic><topic>Linear systems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><topic>Subspaces</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdi, Ahmad</creatorcontrib><creatorcontrib>Cornuéjols, Gérard</creatorcontrib><creatorcontrib>Guenin, Bertrand</creatorcontrib><creatorcontrib>Tunçel, Levent</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdi, Ahmad</au><au>Cornuéjols, Gérard</au><au>Guenin, Bertrand</au><au>Tunçel, Levent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total dual dyadicness and dyadic generating sets</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>206</volume><issue>1-2</issue><spage>125</spage><epage>143</epage><pages>125-143</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>A vector is dyadic if each of its entries is a dyadic rational number, i.e. of the form a 2 k for some integers a ,  k with k ≥ 0 . A linear system A x ≤ b with integral data is totally dual dyadic if whenever min { b ⊤ y : A ⊤ y = w , y ≥ 0 } for w integral, has an optimal solution, it has a dyadic optimal solution. In this paper, we study total dual dyadicness, and give a co-NP characterization of it in terms of dyadic generating sets for cones and subspaces , the former being the dyadic analogue of Hilbert bases , and the latter a polynomial-time recognizable relaxation of the former. Along the way, we see some surprising turn of events when compared to total dual integrality, primarily led by the density of the dyadic rationals. Our study ultimately leads to a better understanding of total dual integrality and polyhedral integrality. We see examples from dyadic matroids, T -joins, cycles, and perfect matchings of a graph.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-023-01967-z</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3976-1021</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2024-07, Vol.206 (1-2), p.125-143
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_journals_3084373301
source SpringerLink Journals - AutoHoldings
subjects Calculus of Variations and Optimal Control
Optimization
Combinatorics
Full Length Paper
Linear systems
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Polynomials
Subspaces
Theoretical
title Total dual dyadicness and dyadic generating sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20dual%20dyadicness%20and%20dyadic%20generating%20sets&rft.jtitle=Mathematical%20programming&rft.au=Abdi,%20Ahmad&rft.date=2024-07-01&rft.volume=206&rft.issue=1-2&rft.spage=125&rft.epage=143&rft.pages=125-143&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-023-01967-z&rft_dat=%3Cproquest_cross%3E3084373301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084373301&rft_id=info:pmid/&rfr_iscdi=true