Multilayer Graphene/Epitaxial Silicon Near‐Infrared Self‐Quenched Avalanche Photodetectors
2D materials and their heterostructures exhibit considerable potential in the development of avalanche photodetectors (APDs) with high gain, response, and signal‐to‐noise ratio. These materials hold promise in addressing inherent technical challenges associated with APDs, such as low light absorptio...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2024-07, Vol.12 (21), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 12 |
creator | Li, Zongwen Cao, Xiaoxue Zhang, Zhixiang Qiao, Baoshi Tian, Feng Dai, Yue Bodepudi, Srikrishna Chanakya Liu, Xinyu Chai, Jian Liu, Dajian Anwar, Muhammad Abid Han, Xun Xue, Fei Fang, Wenzhang Dan, Yaping Zhao, Yuda Hu, Huan Yu, Bin Gao, Chao Xu, Yang |
description | 2D materials and their heterostructures exhibit considerable potential in the development of avalanche photodetectors (APDs) with high gain, response, and signal‐to‐noise ratio. These materials hold promise in addressing inherent technical challenges associated with APDs, such as low light absorption coefficient, elevated noise current, and substantial power consumption due to high bias resulting in only moderate current gain. In this work, a macro‐assembled graphene nanofilm (nMAG)/epitaxial silicon (epi‐Si) vertical heterostructure photodetector with a responsivity of 0.38 A W−1 and a response time of 1.4 µs is reported. The photodetectors use high‐quality nMAG as the absorption layer and a lightly‐doped epi‐Si layer as the multiplication region under the avalanche mode to provide a high responsivity (2.51 mA W−1) and detectivity (2.67 × 109 Jones) at 1550 nm, which can achieve high‐resolution imaging. In addition, the APD displays a weak noise level and an avalanche gain of M = 1123. It can work with relatively low avalanche turn‐on voltages and achieve self‐quenching by switching from illumination to dark during avalanche multiplication, with a real‐time data transfer rate of 38 Mbps in near‐infrared light communication data links. The proposed structure enables the fabrication of high‐performance APDs in the infrared range using complementary‐metal‐oxide‐semiconductor (CMOS)‐compatible processes.
Silicon‐based avalanche photodetectors (APDs) have emerged as crucial devices in imaging and optical communication systems. For challenges such as silicon bandgap, high operating voltage, and large noise, an innovative approach to fabricate highly sensitive multilayer graphene/epitaxial silicon near‐infrared (NIR) APDs is introduced. This study also offers the opportunity to develop CMOS‐compatible room temperature NIR image sensors and signal receivers. |
doi_str_mv | 10.1002/adom.202400335 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3084320873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084320873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2725-374673bd0fc5c12f130a2172cad1594d2ac0a688939083dbb2061b4f607051ad3</originalsourceid><addsrcrecordid>eNqFkEFLw0AUhBdRsGivngOe077dTbLJsdRaC61VqleXl82GpmyzcZOovfkT_I3-ElMq6s3Tm4Fv5sEQckFhQAHYEDO7HTBgAQDn4RHpMZqEPgVBj__oU9Kv6w0AdIYngeiRp0VrmsLgTjtv6rBa61IPJ1XR4FuBxlsVplC29G41us_3j1mZO3Q681ba5J2_b3Wp1p0fvaDBvfTu1raxmW60aqyrz8lJjqbW_e97Rh6vJw_jG3--nM7Go7mvmGChz0UQCZ5mkKtQUZZTDsioYAozGiZBxlABRnGc8ARinqUpg4imQR6BgJBixs_I5aG3cva51XUjN7Z1ZfdScogDziAWvKMGB0o5W9dO57JyxRbdTlKQ-xnlfkb5M2MXSA6B18Lo3T-0HF0tF7_ZL-w1eA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084320873</pqid></control><display><type>article</type><title>Multilayer Graphene/Epitaxial Silicon Near‐Infrared Self‐Quenched Avalanche Photodetectors</title><source>Access via Wiley Online Library</source><creator>Li, Zongwen ; Cao, Xiaoxue ; Zhang, Zhixiang ; Qiao, Baoshi ; Tian, Feng ; Dai, Yue ; Bodepudi, Srikrishna Chanakya ; Liu, Xinyu ; Chai, Jian ; Liu, Dajian ; Anwar, Muhammad Abid ; Han, Xun ; Xue, Fei ; Fang, Wenzhang ; Dan, Yaping ; Zhao, Yuda ; Hu, Huan ; Yu, Bin ; Gao, Chao ; Xu, Yang</creator><creatorcontrib>Li, Zongwen ; Cao, Xiaoxue ; Zhang, Zhixiang ; Qiao, Baoshi ; Tian, Feng ; Dai, Yue ; Bodepudi, Srikrishna Chanakya ; Liu, Xinyu ; Chai, Jian ; Liu, Dajian ; Anwar, Muhammad Abid ; Han, Xun ; Xue, Fei ; Fang, Wenzhang ; Dan, Yaping ; Zhao, Yuda ; Hu, Huan ; Yu, Bin ; Gao, Chao ; Xu, Yang</creatorcontrib><description>2D materials and their heterostructures exhibit considerable potential in the development of avalanche photodetectors (APDs) with high gain, response, and signal‐to‐noise ratio. These materials hold promise in addressing inherent technical challenges associated with APDs, such as low light absorption coefficient, elevated noise current, and substantial power consumption due to high bias resulting in only moderate current gain. In this work, a macro‐assembled graphene nanofilm (nMAG)/epitaxial silicon (epi‐Si) vertical heterostructure photodetector with a responsivity of 0.38 A W−1 and a response time of 1.4 µs is reported. The photodetectors use high‐quality nMAG as the absorption layer and a lightly‐doped epi‐Si layer as the multiplication region under the avalanche mode to provide a high responsivity (2.51 mA W−1) and detectivity (2.67 × 109 Jones) at 1550 nm, which can achieve high‐resolution imaging. In addition, the APD displays a weak noise level and an avalanche gain of M = 1123. It can work with relatively low avalanche turn‐on voltages and achieve self‐quenching by switching from illumination to dark during avalanche multiplication, with a real‐time data transfer rate of 38 Mbps in near‐infrared light communication data links. The proposed structure enables the fabrication of high‐performance APDs in the infrared range using complementary‐metal‐oxide‐semiconductor (CMOS)‐compatible processes.
Silicon‐based avalanche photodetectors (APDs) have emerged as crucial devices in imaging and optical communication systems. For challenges such as silicon bandgap, high operating voltage, and large noise, an innovative approach to fabricate highly sensitive multilayer graphene/epitaxial silicon near‐infrared (NIR) APDs is introduced. This study also offers the opportunity to develop CMOS‐compatible room temperature NIR image sensors and signal receivers.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202400335</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorptivity ; Avalanche diodes ; avalanche photodetectors ; Data transfer (computers) ; Electromagnetic absorption ; epitaxial silicon ; Graphene ; Heterostructures ; high avalanche gain ; High gain ; infrared detection ; Infrared radiation ; macro‐assembled graphene nanofilms ; Multilayers ; Multiplication ; Noise levels ; Photometers ; Silicon ; Two dimensional materials</subject><ispartof>Advanced optical materials, 2024-07, Vol.12 (21), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2725-374673bd0fc5c12f130a2172cad1594d2ac0a688939083dbb2061b4f607051ad3</cites><orcidid>0000-0003-3148-7678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202400335$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202400335$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Li, Zongwen</creatorcontrib><creatorcontrib>Cao, Xiaoxue</creatorcontrib><creatorcontrib>Zhang, Zhixiang</creatorcontrib><creatorcontrib>Qiao, Baoshi</creatorcontrib><creatorcontrib>Tian, Feng</creatorcontrib><creatorcontrib>Dai, Yue</creatorcontrib><creatorcontrib>Bodepudi, Srikrishna Chanakya</creatorcontrib><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Chai, Jian</creatorcontrib><creatorcontrib>Liu, Dajian</creatorcontrib><creatorcontrib>Anwar, Muhammad Abid</creatorcontrib><creatorcontrib>Han, Xun</creatorcontrib><creatorcontrib>Xue, Fei</creatorcontrib><creatorcontrib>Fang, Wenzhang</creatorcontrib><creatorcontrib>Dan, Yaping</creatorcontrib><creatorcontrib>Zhao, Yuda</creatorcontrib><creatorcontrib>Hu, Huan</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><title>Multilayer Graphene/Epitaxial Silicon Near‐Infrared Self‐Quenched Avalanche Photodetectors</title><title>Advanced optical materials</title><description>2D materials and their heterostructures exhibit considerable potential in the development of avalanche photodetectors (APDs) with high gain, response, and signal‐to‐noise ratio. These materials hold promise in addressing inherent technical challenges associated with APDs, such as low light absorption coefficient, elevated noise current, and substantial power consumption due to high bias resulting in only moderate current gain. In this work, a macro‐assembled graphene nanofilm (nMAG)/epitaxial silicon (epi‐Si) vertical heterostructure photodetector with a responsivity of 0.38 A W−1 and a response time of 1.4 µs is reported. The photodetectors use high‐quality nMAG as the absorption layer and a lightly‐doped epi‐Si layer as the multiplication region under the avalanche mode to provide a high responsivity (2.51 mA W−1) and detectivity (2.67 × 109 Jones) at 1550 nm, which can achieve high‐resolution imaging. In addition, the APD displays a weak noise level and an avalanche gain of M = 1123. It can work with relatively low avalanche turn‐on voltages and achieve self‐quenching by switching from illumination to dark during avalanche multiplication, with a real‐time data transfer rate of 38 Mbps in near‐infrared light communication data links. The proposed structure enables the fabrication of high‐performance APDs in the infrared range using complementary‐metal‐oxide‐semiconductor (CMOS)‐compatible processes.
Silicon‐based avalanche photodetectors (APDs) have emerged as crucial devices in imaging and optical communication systems. For challenges such as silicon bandgap, high operating voltage, and large noise, an innovative approach to fabricate highly sensitive multilayer graphene/epitaxial silicon near‐infrared (NIR) APDs is introduced. This study also offers the opportunity to develop CMOS‐compatible room temperature NIR image sensors and signal receivers.</description><subject>Absorptivity</subject><subject>Avalanche diodes</subject><subject>avalanche photodetectors</subject><subject>Data transfer (computers)</subject><subject>Electromagnetic absorption</subject><subject>epitaxial silicon</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>high avalanche gain</subject><subject>High gain</subject><subject>infrared detection</subject><subject>Infrared radiation</subject><subject>macro‐assembled graphene nanofilms</subject><subject>Multilayers</subject><subject>Multiplication</subject><subject>Noise levels</subject><subject>Photometers</subject><subject>Silicon</subject><subject>Two dimensional materials</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLw0AUhBdRsGivngOe077dTbLJsdRaC61VqleXl82GpmyzcZOovfkT_I3-ElMq6s3Tm4Fv5sEQckFhQAHYEDO7HTBgAQDn4RHpMZqEPgVBj__oU9Kv6w0AdIYngeiRp0VrmsLgTjtv6rBa61IPJ1XR4FuBxlsVplC29G41us_3j1mZO3Q681ba5J2_b3Wp1p0fvaDBvfTu1raxmW60aqyrz8lJjqbW_e97Rh6vJw_jG3--nM7Go7mvmGChz0UQCZ5mkKtQUZZTDsioYAozGiZBxlABRnGc8ARinqUpg4imQR6BgJBixs_I5aG3cva51XUjN7Z1ZfdScogDziAWvKMGB0o5W9dO57JyxRbdTlKQ-xnlfkb5M2MXSA6B18Lo3T-0HF0tF7_ZL-w1eA8</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Li, Zongwen</creator><creator>Cao, Xiaoxue</creator><creator>Zhang, Zhixiang</creator><creator>Qiao, Baoshi</creator><creator>Tian, Feng</creator><creator>Dai, Yue</creator><creator>Bodepudi, Srikrishna Chanakya</creator><creator>Liu, Xinyu</creator><creator>Chai, Jian</creator><creator>Liu, Dajian</creator><creator>Anwar, Muhammad Abid</creator><creator>Han, Xun</creator><creator>Xue, Fei</creator><creator>Fang, Wenzhang</creator><creator>Dan, Yaping</creator><creator>Zhao, Yuda</creator><creator>Hu, Huan</creator><creator>Yu, Bin</creator><creator>Gao, Chao</creator><creator>Xu, Yang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3148-7678</orcidid></search><sort><creationdate>20240701</creationdate><title>Multilayer Graphene/Epitaxial Silicon Near‐Infrared Self‐Quenched Avalanche Photodetectors</title><author>Li, Zongwen ; Cao, Xiaoxue ; Zhang, Zhixiang ; Qiao, Baoshi ; Tian, Feng ; Dai, Yue ; Bodepudi, Srikrishna Chanakya ; Liu, Xinyu ; Chai, Jian ; Liu, Dajian ; Anwar, Muhammad Abid ; Han, Xun ; Xue, Fei ; Fang, Wenzhang ; Dan, Yaping ; Zhao, Yuda ; Hu, Huan ; Yu, Bin ; Gao, Chao ; Xu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2725-374673bd0fc5c12f130a2172cad1594d2ac0a688939083dbb2061b4f607051ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorptivity</topic><topic>Avalanche diodes</topic><topic>avalanche photodetectors</topic><topic>Data transfer (computers)</topic><topic>Electromagnetic absorption</topic><topic>epitaxial silicon</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>high avalanche gain</topic><topic>High gain</topic><topic>infrared detection</topic><topic>Infrared radiation</topic><topic>macro‐assembled graphene nanofilms</topic><topic>Multilayers</topic><topic>Multiplication</topic><topic>Noise levels</topic><topic>Photometers</topic><topic>Silicon</topic><topic>Two dimensional materials</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Zongwen</creatorcontrib><creatorcontrib>Cao, Xiaoxue</creatorcontrib><creatorcontrib>Zhang, Zhixiang</creatorcontrib><creatorcontrib>Qiao, Baoshi</creatorcontrib><creatorcontrib>Tian, Feng</creatorcontrib><creatorcontrib>Dai, Yue</creatorcontrib><creatorcontrib>Bodepudi, Srikrishna Chanakya</creatorcontrib><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Chai, Jian</creatorcontrib><creatorcontrib>Liu, Dajian</creatorcontrib><creatorcontrib>Anwar, Muhammad Abid</creatorcontrib><creatorcontrib>Han, Xun</creatorcontrib><creatorcontrib>Xue, Fei</creatorcontrib><creatorcontrib>Fang, Wenzhang</creatorcontrib><creatorcontrib>Dan, Yaping</creatorcontrib><creatorcontrib>Zhao, Yuda</creatorcontrib><creatorcontrib>Hu, Huan</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zongwen</au><au>Cao, Xiaoxue</au><au>Zhang, Zhixiang</au><au>Qiao, Baoshi</au><au>Tian, Feng</au><au>Dai, Yue</au><au>Bodepudi, Srikrishna Chanakya</au><au>Liu, Xinyu</au><au>Chai, Jian</au><au>Liu, Dajian</au><au>Anwar, Muhammad Abid</au><au>Han, Xun</au><au>Xue, Fei</au><au>Fang, Wenzhang</au><au>Dan, Yaping</au><au>Zhao, Yuda</au><au>Hu, Huan</au><au>Yu, Bin</au><au>Gao, Chao</au><au>Xu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilayer Graphene/Epitaxial Silicon Near‐Infrared Self‐Quenched Avalanche Photodetectors</atitle><jtitle>Advanced optical materials</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>12</volume><issue>21</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>2D materials and their heterostructures exhibit considerable potential in the development of avalanche photodetectors (APDs) with high gain, response, and signal‐to‐noise ratio. These materials hold promise in addressing inherent technical challenges associated with APDs, such as low light absorption coefficient, elevated noise current, and substantial power consumption due to high bias resulting in only moderate current gain. In this work, a macro‐assembled graphene nanofilm (nMAG)/epitaxial silicon (epi‐Si) vertical heterostructure photodetector with a responsivity of 0.38 A W−1 and a response time of 1.4 µs is reported. The photodetectors use high‐quality nMAG as the absorption layer and a lightly‐doped epi‐Si layer as the multiplication region under the avalanche mode to provide a high responsivity (2.51 mA W−1) and detectivity (2.67 × 109 Jones) at 1550 nm, which can achieve high‐resolution imaging. In addition, the APD displays a weak noise level and an avalanche gain of M = 1123. It can work with relatively low avalanche turn‐on voltages and achieve self‐quenching by switching from illumination to dark during avalanche multiplication, with a real‐time data transfer rate of 38 Mbps in near‐infrared light communication data links. The proposed structure enables the fabrication of high‐performance APDs in the infrared range using complementary‐metal‐oxide‐semiconductor (CMOS)‐compatible processes.
Silicon‐based avalanche photodetectors (APDs) have emerged as crucial devices in imaging and optical communication systems. For challenges such as silicon bandgap, high operating voltage, and large noise, an innovative approach to fabricate highly sensitive multilayer graphene/epitaxial silicon near‐infrared (NIR) APDs is introduced. This study also offers the opportunity to develop CMOS‐compatible room temperature NIR image sensors and signal receivers.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202400335</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3148-7678</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2024-07, Vol.12 (21), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_3084320873 |
source | Access via Wiley Online Library |
subjects | Absorptivity Avalanche diodes avalanche photodetectors Data transfer (computers) Electromagnetic absorption epitaxial silicon Graphene Heterostructures high avalanche gain High gain infrared detection Infrared radiation macro‐assembled graphene nanofilms Multilayers Multiplication Noise levels Photometers Silicon Two dimensional materials |
title | Multilayer Graphene/Epitaxial Silicon Near‐Infrared Self‐Quenched Avalanche Photodetectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T07%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilayer%20Graphene/Epitaxial%20Silicon%20Near%E2%80%90Infrared%20Self%E2%80%90Quenched%20Avalanche%20Photodetectors&rft.jtitle=Advanced%20optical%20materials&rft.au=Li,%20Zongwen&rft.date=2024-07-01&rft.volume=12&rft.issue=21&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202400335&rft_dat=%3Cproquest_cross%3E3084320873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084320873&rft_id=info:pmid/&rfr_iscdi=true |