Improving the control of the electroforming process in oxide-based memristive devices by X-ray nanopatterning

We explored the possibility to guide the forming process in a Ta/TiO 2 /Pt memristive device using an X-ray nanopatterning procedure, which enables the manipulation of the oxygen content at the nanoscale. The irradiation of selected areas of the sample by a 65 × 58 nm 2 synchrotron X-ray nanobeam lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2024-07, Vol.12 (29), p.11127-11132
Hauptverfasser: Mino, Lorenzo, Bonino, Valentina, Alessio, Andrea, Picollo, Federico, Kuncser, Andrei, Mercioniu, Ionel, Vlaicu, Aurel-Mihai, Badica, Petre, Brescia, Rosaria, Fretto, Matteo, Goss, Kalle, Dittmann, Regina, Truccato, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11132
container_issue 29
container_start_page 11127
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 12
creator Mino, Lorenzo
Bonino, Valentina
Alessio, Andrea
Picollo, Federico
Kuncser, Andrei
Mercioniu, Ionel
Vlaicu, Aurel-Mihai
Badica, Petre
Brescia, Rosaria
Fretto, Matteo
Goss, Kalle
Dittmann, Regina
Truccato, Marco
description We explored the possibility to guide the forming process in a Ta/TiO 2 /Pt memristive device using an X-ray nanopatterning procedure, which enables the manipulation of the oxygen content at the nanoscale. The irradiation of selected areas of the sample by a 65 × 58 nm 2 synchrotron X-ray nanobeam locally generated oxygen vacancies which resulted in the formation of a conductive filament in the desired position in the material. The subsequent application of an electric field between the electrodes was exploited to achieve reversible bipolar resistive switching. A multitechnique characterization was then performed, highlighting a local increase in the height of the crystal and the formation of a dislocation network, associated with the presence of Wadsley defects. Our results show that X-ray nanopatterning could open new avenues for a more deterministic implementation of electroforming in oxide-based memristive devices.
doi_str_mv 10.1039/D4TC01815J
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3084311419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084311419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c184t-ae2dc026bcf4201d81481250b5b38c7ffc05f6d30567daffdb2b5e382c815d8d3</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWGovfoKAN2E1f7fpUarWSsFLBW9LNpnolm5Sk7TYb29qRecy8-DHm5mH0CUlN5Twye29WE4JVVQ-n6ABI5JUY8nF6d_M6nM0SmlFSilaq3oyQP2838Sw6_w7zh-ATfA5hjUO7kfCGkzRLsT-QBTSQEq48zh8dRaqViewuIc-dil3O8AWdl1BcLvHb1XUe-y1DxudM0RfHC7QmdPrBKPfPkSvjw_L6VO1eJnNp3eLylAlcqWBWUNY3RonGKFWUaEok6SVLVdm7Jwh0tWWE1mPrXbOtqyVwBUz5XmrLB-iq6NvufhzCyk3q7CNvqxsOFGCUyropFDXR8rEkFIE12xi1-u4byhpDok2_4nyb8ZXai0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084311419</pqid></control><display><type>article</type><title>Improving the control of the electroforming process in oxide-based memristive devices by X-ray nanopatterning</title><source>Royal Society Of Chemistry Journals</source><creator>Mino, Lorenzo ; Bonino, Valentina ; Alessio, Andrea ; Picollo, Federico ; Kuncser, Andrei ; Mercioniu, Ionel ; Vlaicu, Aurel-Mihai ; Badica, Petre ; Brescia, Rosaria ; Fretto, Matteo ; Goss, Kalle ; Dittmann, Regina ; Truccato, Marco</creator><creatorcontrib>Mino, Lorenzo ; Bonino, Valentina ; Alessio, Andrea ; Picollo, Federico ; Kuncser, Andrei ; Mercioniu, Ionel ; Vlaicu, Aurel-Mihai ; Badica, Petre ; Brescia, Rosaria ; Fretto, Matteo ; Goss, Kalle ; Dittmann, Regina ; Truccato, Marco</creatorcontrib><description>We explored the possibility to guide the forming process in a Ta/TiO 2 /Pt memristive device using an X-ray nanopatterning procedure, which enables the manipulation of the oxygen content at the nanoscale. The irradiation of selected areas of the sample by a 65 × 58 nm 2 synchrotron X-ray nanobeam locally generated oxygen vacancies which resulted in the formation of a conductive filament in the desired position in the material. The subsequent application of an electric field between the electrodes was exploited to achieve reversible bipolar resistive switching. A multitechnique characterization was then performed, highlighting a local increase in the height of the crystal and the formation of a dislocation network, associated with the presence of Wadsley defects. Our results show that X-ray nanopatterning could open new avenues for a more deterministic implementation of electroforming in oxide-based memristive devices.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/D4TC01815J</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Crystal defects ; Crystal dislocations ; Electric fields ; Electroforming ; Lattice vacancies ; Memory devices ; Oxygen ; Oxygen content ; Synchrotron radiation ; Tantalum ; Titanium dioxide</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2024-07, Vol.12 (29), p.11127-11132</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c184t-ae2dc026bcf4201d81481250b5b38c7ffc05f6d30567daffdb2b5e382c815d8d3</cites><orcidid>0000-0003-3179-271X ; 0000-0003-0607-0627 ; 0000-0003-1564-221X ; 0000-0002-9882-8361 ; 0000-0003-1886-1864 ; 0000-0002-3616-5494 ; 0000-0002-1726-4243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Mino, Lorenzo</creatorcontrib><creatorcontrib>Bonino, Valentina</creatorcontrib><creatorcontrib>Alessio, Andrea</creatorcontrib><creatorcontrib>Picollo, Federico</creatorcontrib><creatorcontrib>Kuncser, Andrei</creatorcontrib><creatorcontrib>Mercioniu, Ionel</creatorcontrib><creatorcontrib>Vlaicu, Aurel-Mihai</creatorcontrib><creatorcontrib>Badica, Petre</creatorcontrib><creatorcontrib>Brescia, Rosaria</creatorcontrib><creatorcontrib>Fretto, Matteo</creatorcontrib><creatorcontrib>Goss, Kalle</creatorcontrib><creatorcontrib>Dittmann, Regina</creatorcontrib><creatorcontrib>Truccato, Marco</creatorcontrib><title>Improving the control of the electroforming process in oxide-based memristive devices by X-ray nanopatterning</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>We explored the possibility to guide the forming process in a Ta/TiO 2 /Pt memristive device using an X-ray nanopatterning procedure, which enables the manipulation of the oxygen content at the nanoscale. The irradiation of selected areas of the sample by a 65 × 58 nm 2 synchrotron X-ray nanobeam locally generated oxygen vacancies which resulted in the formation of a conductive filament in the desired position in the material. The subsequent application of an electric field between the electrodes was exploited to achieve reversible bipolar resistive switching. A multitechnique characterization was then performed, highlighting a local increase in the height of the crystal and the formation of a dislocation network, associated with the presence of Wadsley defects. Our results show that X-ray nanopatterning could open new avenues for a more deterministic implementation of electroforming in oxide-based memristive devices.</description><subject>Crystal defects</subject><subject>Crystal dislocations</subject><subject>Electric fields</subject><subject>Electroforming</subject><subject>Lattice vacancies</subject><subject>Memory devices</subject><subject>Oxygen</subject><subject>Oxygen content</subject><subject>Synchrotron radiation</subject><subject>Tantalum</subject><subject>Titanium dioxide</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEQxYMoWGovfoKAN2E1f7fpUarWSsFLBW9LNpnolm5Sk7TYb29qRecy8-DHm5mH0CUlN5Twye29WE4JVVQ-n6ABI5JUY8nF6d_M6nM0SmlFSilaq3oyQP2838Sw6_w7zh-ATfA5hjUO7kfCGkzRLsT-QBTSQEq48zh8dRaqViewuIc-dil3O8AWdl1BcLvHb1XUe-y1DxudM0RfHC7QmdPrBKPfPkSvjw_L6VO1eJnNp3eLylAlcqWBWUNY3RonGKFWUaEok6SVLVdm7Jwh0tWWE1mPrXbOtqyVwBUz5XmrLB-iq6NvufhzCyk3q7CNvqxsOFGCUyropFDXR8rEkFIE12xi1-u4byhpDok2_4nyb8ZXai0</recordid><startdate>20240725</startdate><enddate>20240725</enddate><creator>Mino, Lorenzo</creator><creator>Bonino, Valentina</creator><creator>Alessio, Andrea</creator><creator>Picollo, Federico</creator><creator>Kuncser, Andrei</creator><creator>Mercioniu, Ionel</creator><creator>Vlaicu, Aurel-Mihai</creator><creator>Badica, Petre</creator><creator>Brescia, Rosaria</creator><creator>Fretto, Matteo</creator><creator>Goss, Kalle</creator><creator>Dittmann, Regina</creator><creator>Truccato, Marco</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3179-271X</orcidid><orcidid>https://orcid.org/0000-0003-0607-0627</orcidid><orcidid>https://orcid.org/0000-0003-1564-221X</orcidid><orcidid>https://orcid.org/0000-0002-9882-8361</orcidid><orcidid>https://orcid.org/0000-0003-1886-1864</orcidid><orcidid>https://orcid.org/0000-0002-3616-5494</orcidid><orcidid>https://orcid.org/0000-0002-1726-4243</orcidid></search><sort><creationdate>20240725</creationdate><title>Improving the control of the electroforming process in oxide-based memristive devices by X-ray nanopatterning</title><author>Mino, Lorenzo ; Bonino, Valentina ; Alessio, Andrea ; Picollo, Federico ; Kuncser, Andrei ; Mercioniu, Ionel ; Vlaicu, Aurel-Mihai ; Badica, Petre ; Brescia, Rosaria ; Fretto, Matteo ; Goss, Kalle ; Dittmann, Regina ; Truccato, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c184t-ae2dc026bcf4201d81481250b5b38c7ffc05f6d30567daffdb2b5e382c815d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crystal defects</topic><topic>Crystal dislocations</topic><topic>Electric fields</topic><topic>Electroforming</topic><topic>Lattice vacancies</topic><topic>Memory devices</topic><topic>Oxygen</topic><topic>Oxygen content</topic><topic>Synchrotron radiation</topic><topic>Tantalum</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mino, Lorenzo</creatorcontrib><creatorcontrib>Bonino, Valentina</creatorcontrib><creatorcontrib>Alessio, Andrea</creatorcontrib><creatorcontrib>Picollo, Federico</creatorcontrib><creatorcontrib>Kuncser, Andrei</creatorcontrib><creatorcontrib>Mercioniu, Ionel</creatorcontrib><creatorcontrib>Vlaicu, Aurel-Mihai</creatorcontrib><creatorcontrib>Badica, Petre</creatorcontrib><creatorcontrib>Brescia, Rosaria</creatorcontrib><creatorcontrib>Fretto, Matteo</creatorcontrib><creatorcontrib>Goss, Kalle</creatorcontrib><creatorcontrib>Dittmann, Regina</creatorcontrib><creatorcontrib>Truccato, Marco</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mino, Lorenzo</au><au>Bonino, Valentina</au><au>Alessio, Andrea</au><au>Picollo, Federico</au><au>Kuncser, Andrei</au><au>Mercioniu, Ionel</au><au>Vlaicu, Aurel-Mihai</au><au>Badica, Petre</au><au>Brescia, Rosaria</au><au>Fretto, Matteo</au><au>Goss, Kalle</au><au>Dittmann, Regina</au><au>Truccato, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the control of the electroforming process in oxide-based memristive devices by X-ray nanopatterning</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2024-07-25</date><risdate>2024</risdate><volume>12</volume><issue>29</issue><spage>11127</spage><epage>11132</epage><pages>11127-11132</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>We explored the possibility to guide the forming process in a Ta/TiO 2 /Pt memristive device using an X-ray nanopatterning procedure, which enables the manipulation of the oxygen content at the nanoscale. The irradiation of selected areas of the sample by a 65 × 58 nm 2 synchrotron X-ray nanobeam locally generated oxygen vacancies which resulted in the formation of a conductive filament in the desired position in the material. The subsequent application of an electric field between the electrodes was exploited to achieve reversible bipolar resistive switching. A multitechnique characterization was then performed, highlighting a local increase in the height of the crystal and the formation of a dislocation network, associated with the presence of Wadsley defects. Our results show that X-ray nanopatterning could open new avenues for a more deterministic implementation of electroforming in oxide-based memristive devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D4TC01815J</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3179-271X</orcidid><orcidid>https://orcid.org/0000-0003-0607-0627</orcidid><orcidid>https://orcid.org/0000-0003-1564-221X</orcidid><orcidid>https://orcid.org/0000-0002-9882-8361</orcidid><orcidid>https://orcid.org/0000-0003-1886-1864</orcidid><orcidid>https://orcid.org/0000-0002-3616-5494</orcidid><orcidid>https://orcid.org/0000-0002-1726-4243</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2024-07, Vol.12 (29), p.11127-11132
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_3084311419
source Royal Society Of Chemistry Journals
subjects Crystal defects
Crystal dislocations
Electric fields
Electroforming
Lattice vacancies
Memory devices
Oxygen
Oxygen content
Synchrotron radiation
Tantalum
Titanium dioxide
title Improving the control of the electroforming process in oxide-based memristive devices by X-ray nanopatterning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20control%20of%20the%20electroforming%20process%20in%20oxide-based%20memristive%20devices%20by%20X-ray%20nanopatterning&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Mino,%20Lorenzo&rft.date=2024-07-25&rft.volume=12&rft.issue=29&rft.spage=11127&rft.epage=11132&rft.pages=11127-11132&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/D4TC01815J&rft_dat=%3Cproquest_cross%3E3084311419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084311419&rft_id=info:pmid/&rfr_iscdi=true