Trans-Global Biogeochemistry of Soil to Grain Transport of Arsenic and Cadmium
Previous studies have shown that arsenic and cadmium can accumulate in rice grain to levels that cause health concerns. Furthermore, geographical survey has shown that there is considerable variation (~ 100-fold) in accumulation of these carcinogens in rice grain. This variance must be due to hetero...
Gespeichert in:
Veröffentlicht in: | Exposure and health 2024-08, Vol.16 (4), p.925-942 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 942 |
---|---|
container_issue | 4 |
container_start_page | 925 |
container_title | Exposure and health |
container_volume | 16 |
creator | Perera, A. J. D. Li, Litian Carey, Manus Moreno-Jiménez, Eduardo Flagmeier, Maren Marwa, Ernest De Silva, P. Mangala C. S. Nguyen, Minh N. Meharg, Andrew A. Meharg, Caroline |
description | Previous studies have shown that arsenic and cadmium can accumulate in rice grain to levels that cause health concerns. Furthermore, geographical survey has shown that there is considerable variation (~ 100-fold) in accumulation of these carcinogens in rice grain. This variance must be due to heterogeneity in soil biogeochemistry and contrasting rice management regimens. Here we present the first systematic global study to investigate the impact of soil biogeochemistry on accumulation of these elements in rice grain. Matched grain, shoot, root and soil samples were collected across a latitudinal gradient from East Africa to Europe and soil, shoot, grain chemistry and soil microbial community (prokaryotes and fungi) assessed within the context of arsenic and cadmium biogeochemistry. European and Vietnamese grain sum of arsenic species (inorganic arsenic plus dimethylarsonic acid) concentration medians, ~ 0.1 mg/kg, were found to be around ten-fold higher compared to those in East Africa and Sri Lanka. Arsenic concentrations were linked to higher levels of soil arsenic, and to higher abundance of soil sulphur-oxidising and sulphate reducing bacteria and methanogenic archaea. For cadmium, Sri Lanka showed highest (median 0.0156 mg/kg) and Europe lowest (median of 0.001 mg/kg) levels in grain, with the other regions showing intermediate values. Interestingly, grain cadmium was unrelated to soil cadmium concentrations, with Europe having the highest levels of cadmium in soil. Instead, grain cadmium correlated with higher oxidation/reduction potential, lower -log[hydrogen ion], lower soil calcium, and to a higher abundance of aerobic bacteria and fungi (lowest abundance of these organisms in European soils). |
doi_str_mv | 10.1007/s12403-023-00600-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3084113417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084113417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-18ccec423d0630bd5e7740f741f90b857c515e9b98957ef616f08268409b18fe3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWLR_wFPA8-pk87nHWrQKRQ_Wc9jNJnXL7qYmW0r_vWlX8eZhmIF5nhl4EbohcEcA5H0kOQOaQZ4KBEC2P0OTnHGSFULx899ZCnGJpjFuAIAITpI1Qa-rUPYxW7S-Klv80Pi19ebTdk0cwgF7h9990-LB40Uomx6f6K0Pw3E1C9H2jcFlX-N5WXfNrrtGF65so53-9Cv08fS4mj9ny7fFy3y2zAwVdMiIMsYaltMaBIWq5lZKBk4y4gqoFJeGE26LqlAFl9YJIhyoXCgGRUWUs_QK3Y53t8F_7Wwc9MbvQp9eagqKEUIZkYnKR8oEH2OwTm9D05XhoAnoY3R6jE6n6PQpOr1PEh2lmOB-bcPf6X-sbxgvb_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084113417</pqid></control><display><type>article</type><title>Trans-Global Biogeochemistry of Soil to Grain Transport of Arsenic and Cadmium</title><source>Springer Online Journals Complete</source><creator>Perera, A. J. D. ; Li, Litian ; Carey, Manus ; Moreno-Jiménez, Eduardo ; Flagmeier, Maren ; Marwa, Ernest ; De Silva, P. Mangala C. S. ; Nguyen, Minh N. ; Meharg, Andrew A. ; Meharg, Caroline</creator><creatorcontrib>Perera, A. J. D. ; Li, Litian ; Carey, Manus ; Moreno-Jiménez, Eduardo ; Flagmeier, Maren ; Marwa, Ernest ; De Silva, P. Mangala C. S. ; Nguyen, Minh N. ; Meharg, Andrew A. ; Meharg, Caroline</creatorcontrib><description>Previous studies have shown that arsenic and cadmium can accumulate in rice grain to levels that cause health concerns. Furthermore, geographical survey has shown that there is considerable variation (~ 100-fold) in accumulation of these carcinogens in rice grain. This variance must be due to heterogeneity in soil biogeochemistry and contrasting rice management regimens. Here we present the first systematic global study to investigate the impact of soil biogeochemistry on accumulation of these elements in rice grain. Matched grain, shoot, root and soil samples were collected across a latitudinal gradient from East Africa to Europe and soil, shoot, grain chemistry and soil microbial community (prokaryotes and fungi) assessed within the context of arsenic and cadmium biogeochemistry. European and Vietnamese grain sum of arsenic species (inorganic arsenic plus dimethylarsonic acid) concentration medians, ~ 0.1 mg/kg, were found to be around ten-fold higher compared to those in East Africa and Sri Lanka. Arsenic concentrations were linked to higher levels of soil arsenic, and to higher abundance of soil sulphur-oxidising and sulphate reducing bacteria and methanogenic archaea. For cadmium, Sri Lanka showed highest (median 0.0156 mg/kg) and Europe lowest (median of 0.001 mg/kg) levels in grain, with the other regions showing intermediate values. Interestingly, grain cadmium was unrelated to soil cadmium concentrations, with Europe having the highest levels of cadmium in soil. Instead, grain cadmium correlated with higher oxidation/reduction potential, lower -log[hydrogen ion], lower soil calcium, and to a higher abundance of aerobic bacteria and fungi (lowest abundance of these organisms in European soils).</description><identifier>ISSN: 2451-9766</identifier><identifier>EISSN: 2451-9685</identifier><identifier>DOI: 10.1007/s12403-023-00600-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Abundance ; Accumulation ; Acidic soils ; Aerobic bacteria ; Aquatic Pollution ; Arsenic ; Biogeochemistry ; Cadmium ; Carcinogens ; Chemistry ; Concentration gradient ; Earth and Environmental Science ; Environment ; Environmental Health ; Floods ; Fungi ; Geography ; Heterogeneity ; Hydrogen ions ; Methanogenic archaea ; Microorganisms ; Original Paper ; Oxidation ; Physicists ; Pollution ; Prokaryotes ; Rice ; Soil bacteria ; Soil chemistry ; Soil investigations ; Soil microorganisms ; Soils ; Sulfate reduction ; Sulfate-reducing bacteria ; Trends ; Waste Water Technology ; Water and Health ; Water Management ; Water Pollution Control ; Water Quality/Water Pollution</subject><ispartof>Exposure and health, 2024-08, Vol.16 (4), p.925-942</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-18ccec423d0630bd5e7740f741f90b857c515e9b98957ef616f08268409b18fe3</citedby><cites>FETCH-LOGICAL-c363t-18ccec423d0630bd5e7740f741f90b857c515e9b98957ef616f08268409b18fe3</cites><orcidid>0000-0003-0573-9528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12403-023-00600-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12403-023-00600-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Perera, A. J. D.</creatorcontrib><creatorcontrib>Li, Litian</creatorcontrib><creatorcontrib>Carey, Manus</creatorcontrib><creatorcontrib>Moreno-Jiménez, Eduardo</creatorcontrib><creatorcontrib>Flagmeier, Maren</creatorcontrib><creatorcontrib>Marwa, Ernest</creatorcontrib><creatorcontrib>De Silva, P. Mangala C. S.</creatorcontrib><creatorcontrib>Nguyen, Minh N.</creatorcontrib><creatorcontrib>Meharg, Andrew A.</creatorcontrib><creatorcontrib>Meharg, Caroline</creatorcontrib><title>Trans-Global Biogeochemistry of Soil to Grain Transport of Arsenic and Cadmium</title><title>Exposure and health</title><addtitle>Expo Health</addtitle><description>Previous studies have shown that arsenic and cadmium can accumulate in rice grain to levels that cause health concerns. Furthermore, geographical survey has shown that there is considerable variation (~ 100-fold) in accumulation of these carcinogens in rice grain. This variance must be due to heterogeneity in soil biogeochemistry and contrasting rice management regimens. Here we present the first systematic global study to investigate the impact of soil biogeochemistry on accumulation of these elements in rice grain. Matched grain, shoot, root and soil samples were collected across a latitudinal gradient from East Africa to Europe and soil, shoot, grain chemistry and soil microbial community (prokaryotes and fungi) assessed within the context of arsenic and cadmium biogeochemistry. European and Vietnamese grain sum of arsenic species (inorganic arsenic plus dimethylarsonic acid) concentration medians, ~ 0.1 mg/kg, were found to be around ten-fold higher compared to those in East Africa and Sri Lanka. Arsenic concentrations were linked to higher levels of soil arsenic, and to higher abundance of soil sulphur-oxidising and sulphate reducing bacteria and methanogenic archaea. For cadmium, Sri Lanka showed highest (median 0.0156 mg/kg) and Europe lowest (median of 0.001 mg/kg) levels in grain, with the other regions showing intermediate values. Interestingly, grain cadmium was unrelated to soil cadmium concentrations, with Europe having the highest levels of cadmium in soil. Instead, grain cadmium correlated with higher oxidation/reduction potential, lower -log[hydrogen ion], lower soil calcium, and to a higher abundance of aerobic bacteria and fungi (lowest abundance of these organisms in European soils).</description><subject>Abundance</subject><subject>Accumulation</subject><subject>Acidic soils</subject><subject>Aerobic bacteria</subject><subject>Aquatic Pollution</subject><subject>Arsenic</subject><subject>Biogeochemistry</subject><subject>Cadmium</subject><subject>Carcinogens</subject><subject>Chemistry</subject><subject>Concentration gradient</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Health</subject><subject>Floods</subject><subject>Fungi</subject><subject>Geography</subject><subject>Heterogeneity</subject><subject>Hydrogen ions</subject><subject>Methanogenic archaea</subject><subject>Microorganisms</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Physicists</subject><subject>Pollution</subject><subject>Prokaryotes</subject><subject>Rice</subject><subject>Soil bacteria</subject><subject>Soil chemistry</subject><subject>Soil investigations</subject><subject>Soil microorganisms</subject><subject>Soils</subject><subject>Sulfate reduction</subject><subject>Sulfate-reducing bacteria</subject><subject>Trends</subject><subject>Waste Water Technology</subject><subject>Water and Health</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water Quality/Water Pollution</subject><issn>2451-9766</issn><issn>2451-9685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWLR_wFPA8-pk87nHWrQKRQ_Wc9jNJnXL7qYmW0r_vWlX8eZhmIF5nhl4EbohcEcA5H0kOQOaQZ4KBEC2P0OTnHGSFULx899ZCnGJpjFuAIAITpI1Qa-rUPYxW7S-Klv80Pi19ebTdk0cwgF7h9990-LB40Uomx6f6K0Pw3E1C9H2jcFlX-N5WXfNrrtGF65so53-9Cv08fS4mj9ny7fFy3y2zAwVdMiIMsYaltMaBIWq5lZKBk4y4gqoFJeGE26LqlAFl9YJIhyoXCgGRUWUs_QK3Y53t8F_7Wwc9MbvQp9eagqKEUIZkYnKR8oEH2OwTm9D05XhoAnoY3R6jE6n6PQpOr1PEh2lmOB-bcPf6X-sbxgvb_8</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Perera, A. J. D.</creator><creator>Li, Litian</creator><creator>Carey, Manus</creator><creator>Moreno-Jiménez, Eduardo</creator><creator>Flagmeier, Maren</creator><creator>Marwa, Ernest</creator><creator>De Silva, P. Mangala C. S.</creator><creator>Nguyen, Minh N.</creator><creator>Meharg, Andrew A.</creator><creator>Meharg, Caroline</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0573-9528</orcidid></search><sort><creationdate>20240801</creationdate><title>Trans-Global Biogeochemistry of Soil to Grain Transport of Arsenic and Cadmium</title><author>Perera, A. J. D. ; Li, Litian ; Carey, Manus ; Moreno-Jiménez, Eduardo ; Flagmeier, Maren ; Marwa, Ernest ; De Silva, P. Mangala C. S. ; Nguyen, Minh N. ; Meharg, Andrew A. ; Meharg, Caroline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-18ccec423d0630bd5e7740f741f90b857c515e9b98957ef616f08268409b18fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abundance</topic><topic>Accumulation</topic><topic>Acidic soils</topic><topic>Aerobic bacteria</topic><topic>Aquatic Pollution</topic><topic>Arsenic</topic><topic>Biogeochemistry</topic><topic>Cadmium</topic><topic>Carcinogens</topic><topic>Chemistry</topic><topic>Concentration gradient</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Health</topic><topic>Floods</topic><topic>Fungi</topic><topic>Geography</topic><topic>Heterogeneity</topic><topic>Hydrogen ions</topic><topic>Methanogenic archaea</topic><topic>Microorganisms</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Physicists</topic><topic>Pollution</topic><topic>Prokaryotes</topic><topic>Rice</topic><topic>Soil bacteria</topic><topic>Soil chemistry</topic><topic>Soil investigations</topic><topic>Soil microorganisms</topic><topic>Soils</topic><topic>Sulfate reduction</topic><topic>Sulfate-reducing bacteria</topic><topic>Trends</topic><topic>Waste Water Technology</topic><topic>Water and Health</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perera, A. J. D.</creatorcontrib><creatorcontrib>Li, Litian</creatorcontrib><creatorcontrib>Carey, Manus</creatorcontrib><creatorcontrib>Moreno-Jiménez, Eduardo</creatorcontrib><creatorcontrib>Flagmeier, Maren</creatorcontrib><creatorcontrib>Marwa, Ernest</creatorcontrib><creatorcontrib>De Silva, P. Mangala C. S.</creatorcontrib><creatorcontrib>Nguyen, Minh N.</creatorcontrib><creatorcontrib>Meharg, Andrew A.</creatorcontrib><creatorcontrib>Meharg, Caroline</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Exposure and health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perera, A. J. D.</au><au>Li, Litian</au><au>Carey, Manus</au><au>Moreno-Jiménez, Eduardo</au><au>Flagmeier, Maren</au><au>Marwa, Ernest</au><au>De Silva, P. Mangala C. S.</au><au>Nguyen, Minh N.</au><au>Meharg, Andrew A.</au><au>Meharg, Caroline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trans-Global Biogeochemistry of Soil to Grain Transport of Arsenic and Cadmium</atitle><jtitle>Exposure and health</jtitle><stitle>Expo Health</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>16</volume><issue>4</issue><spage>925</spage><epage>942</epage><pages>925-942</pages><issn>2451-9766</issn><eissn>2451-9685</eissn><abstract>Previous studies have shown that arsenic and cadmium can accumulate in rice grain to levels that cause health concerns. Furthermore, geographical survey has shown that there is considerable variation (~ 100-fold) in accumulation of these carcinogens in rice grain. This variance must be due to heterogeneity in soil biogeochemistry and contrasting rice management regimens. Here we present the first systematic global study to investigate the impact of soil biogeochemistry on accumulation of these elements in rice grain. Matched grain, shoot, root and soil samples were collected across a latitudinal gradient from East Africa to Europe and soil, shoot, grain chemistry and soil microbial community (prokaryotes and fungi) assessed within the context of arsenic and cadmium biogeochemistry. European and Vietnamese grain sum of arsenic species (inorganic arsenic plus dimethylarsonic acid) concentration medians, ~ 0.1 mg/kg, were found to be around ten-fold higher compared to those in East Africa and Sri Lanka. Arsenic concentrations were linked to higher levels of soil arsenic, and to higher abundance of soil sulphur-oxidising and sulphate reducing bacteria and methanogenic archaea. For cadmium, Sri Lanka showed highest (median 0.0156 mg/kg) and Europe lowest (median of 0.001 mg/kg) levels in grain, with the other regions showing intermediate values. Interestingly, grain cadmium was unrelated to soil cadmium concentrations, with Europe having the highest levels of cadmium in soil. Instead, grain cadmium correlated with higher oxidation/reduction potential, lower -log[hydrogen ion], lower soil calcium, and to a higher abundance of aerobic bacteria and fungi (lowest abundance of these organisms in European soils).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12403-023-00600-w</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0573-9528</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2451-9766 |
ispartof | Exposure and health, 2024-08, Vol.16 (4), p.925-942 |
issn | 2451-9766 2451-9685 |
language | eng |
recordid | cdi_proquest_journals_3084113417 |
source | Springer Online Journals Complete |
subjects | Abundance Accumulation Acidic soils Aerobic bacteria Aquatic Pollution Arsenic Biogeochemistry Cadmium Carcinogens Chemistry Concentration gradient Earth and Environmental Science Environment Environmental Health Floods Fungi Geography Heterogeneity Hydrogen ions Methanogenic archaea Microorganisms Original Paper Oxidation Physicists Pollution Prokaryotes Rice Soil bacteria Soil chemistry Soil investigations Soil microorganisms Soils Sulfate reduction Sulfate-reducing bacteria Trends Waste Water Technology Water and Health Water Management Water Pollution Control Water Quality/Water Pollution |
title | Trans-Global Biogeochemistry of Soil to Grain Transport of Arsenic and Cadmium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trans-Global%20Biogeochemistry%20of%20Soil%20to%20Grain%20Transport%20of%20Arsenic%20and%20Cadmium&rft.jtitle=Exposure%20and%20health&rft.au=Perera,%20A.%20J.%20D.&rft.date=2024-08-01&rft.volume=16&rft.issue=4&rft.spage=925&rft.epage=942&rft.pages=925-942&rft.issn=2451-9766&rft.eissn=2451-9685&rft_id=info:doi/10.1007/s12403-023-00600-w&rft_dat=%3Cproquest_cross%3E3084113417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084113417&rft_id=info:pmid/&rfr_iscdi=true |