Structural Optimization Ambiguity and Simplicity Bias in Unsupervised Neural Grammar Induction

Neural parameterization has significantly advanced unsupervised grammar induction. However, training these models with a traditional likelihood loss for all possible parses exacerbates two issues: 1) \(\textit{structural optimization ambiguity}\) that arbitrarily selects one among structurally ambig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Park, Jinwook, Kim, Kangil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Park, Jinwook
Kim, Kangil
description Neural parameterization has significantly advanced unsupervised grammar induction. However, training these models with a traditional likelihood loss for all possible parses exacerbates two issues: 1) \(\textit{structural optimization ambiguity}\) that arbitrarily selects one among structurally ambiguous optimal grammars despite the specific preference of gold parses, and 2) \(\textit{structural simplicity bias}\) that leads a model to underutilize rules to compose parse trees. These challenges subject unsupervised neural grammar induction (UNGI) to inevitable prediction errors, high variance, and the necessity for extensive grammars to achieve accurate predictions. This paper tackles these issues, offering a comprehensive analysis of their origins. As a solution, we introduce \(\textit{sentence-wise parse-focusing}\) to reduce the parse pool per sentence for loss evaluation, using the structural bias from pre-trained parsers on the same dataset. In unsupervised parsing benchmark tests, our method significantly improves performance while effectively reducing variance and bias toward overly simplistic parses. Our research promotes learning more compact, accurate, and consistent explicit grammars, facilitating better interpretability.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3084092541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084092541</sourcerecordid><originalsourceid>FETCH-proquest_journals_30840925413</originalsourceid><addsrcrecordid>eNqNzEsKwjAYBOAgCBbtHQKuC2nSal2q-Nroorq1xDbKX5o05iHo6a3iAVwNwwxfDwWUsTjKEkoHKLS2JoTQyZSmKQvQOXfGl84b3uCDdiDhxR20Cs_lBW4e3BNzVeEcpG6g_NQFcItB4ZOyXgvzACsqvBdfYWO4lNzgnao6tGNGqH_ljRXhL4dovF4dl9tIm_buhXVF3XqjuqlgJEvIjKZJzP57vQHYvUTu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084092541</pqid></control><display><type>article</type><title>Structural Optimization Ambiguity and Simplicity Bias in Unsupervised Neural Grammar Induction</title><source>Free E- Journals</source><creator>Park, Jinwook ; Kim, Kangil</creator><creatorcontrib>Park, Jinwook ; Kim, Kangil</creatorcontrib><description>Neural parameterization has significantly advanced unsupervised grammar induction. However, training these models with a traditional likelihood loss for all possible parses exacerbates two issues: 1) \(\textit{structural optimization ambiguity}\) that arbitrarily selects one among structurally ambiguous optimal grammars despite the specific preference of gold parses, and 2) \(\textit{structural simplicity bias}\) that leads a model to underutilize rules to compose parse trees. These challenges subject unsupervised neural grammar induction (UNGI) to inevitable prediction errors, high variance, and the necessity for extensive grammars to achieve accurate predictions. This paper tackles these issues, offering a comprehensive analysis of their origins. As a solution, we introduce \(\textit{sentence-wise parse-focusing}\) to reduce the parse pool per sentence for loss evaluation, using the structural bias from pre-trained parsers on the same dataset. In unsupervised parsing benchmark tests, our method significantly improves performance while effectively reducing variance and bias toward overly simplistic parses. Our research promotes learning more compact, accurate, and consistent explicit grammars, facilitating better interpretability.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ambiguity ; Bias ; Grammars ; Optimization ; Parameterization ; Sentences ; Variance analysis</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Park, Jinwook</creatorcontrib><creatorcontrib>Kim, Kangil</creatorcontrib><title>Structural Optimization Ambiguity and Simplicity Bias in Unsupervised Neural Grammar Induction</title><title>arXiv.org</title><description>Neural parameterization has significantly advanced unsupervised grammar induction. However, training these models with a traditional likelihood loss for all possible parses exacerbates two issues: 1) \(\textit{structural optimization ambiguity}\) that arbitrarily selects one among structurally ambiguous optimal grammars despite the specific preference of gold parses, and 2) \(\textit{structural simplicity bias}\) that leads a model to underutilize rules to compose parse trees. These challenges subject unsupervised neural grammar induction (UNGI) to inevitable prediction errors, high variance, and the necessity for extensive grammars to achieve accurate predictions. This paper tackles these issues, offering a comprehensive analysis of their origins. As a solution, we introduce \(\textit{sentence-wise parse-focusing}\) to reduce the parse pool per sentence for loss evaluation, using the structural bias from pre-trained parsers on the same dataset. In unsupervised parsing benchmark tests, our method significantly improves performance while effectively reducing variance and bias toward overly simplistic parses. Our research promotes learning more compact, accurate, and consistent explicit grammars, facilitating better interpretability.</description><subject>Ambiguity</subject><subject>Bias</subject><subject>Grammars</subject><subject>Optimization</subject><subject>Parameterization</subject><subject>Sentences</subject><subject>Variance analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzEsKwjAYBOAgCBbtHQKuC2nSal2q-Nroorq1xDbKX5o05iHo6a3iAVwNwwxfDwWUsTjKEkoHKLS2JoTQyZSmKQvQOXfGl84b3uCDdiDhxR20Cs_lBW4e3BNzVeEcpG6g_NQFcItB4ZOyXgvzACsqvBdfYWO4lNzgnao6tGNGqH_ljRXhL4dovF4dl9tIm_buhXVF3XqjuqlgJEvIjKZJzP57vQHYvUTu</recordid><startdate>20240723</startdate><enddate>20240723</enddate><creator>Park, Jinwook</creator><creator>Kim, Kangil</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240723</creationdate><title>Structural Optimization Ambiguity and Simplicity Bias in Unsupervised Neural Grammar Induction</title><author>Park, Jinwook ; Kim, Kangil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30840925413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ambiguity</topic><topic>Bias</topic><topic>Grammars</topic><topic>Optimization</topic><topic>Parameterization</topic><topic>Sentences</topic><topic>Variance analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, Jinwook</creatorcontrib><creatorcontrib>Kim, Kangil</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Jinwook</au><au>Kim, Kangil</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Structural Optimization Ambiguity and Simplicity Bias in Unsupervised Neural Grammar Induction</atitle><jtitle>arXiv.org</jtitle><date>2024-07-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Neural parameterization has significantly advanced unsupervised grammar induction. However, training these models with a traditional likelihood loss for all possible parses exacerbates two issues: 1) \(\textit{structural optimization ambiguity}\) that arbitrarily selects one among structurally ambiguous optimal grammars despite the specific preference of gold parses, and 2) \(\textit{structural simplicity bias}\) that leads a model to underutilize rules to compose parse trees. These challenges subject unsupervised neural grammar induction (UNGI) to inevitable prediction errors, high variance, and the necessity for extensive grammars to achieve accurate predictions. This paper tackles these issues, offering a comprehensive analysis of their origins. As a solution, we introduce \(\textit{sentence-wise parse-focusing}\) to reduce the parse pool per sentence for loss evaluation, using the structural bias from pre-trained parsers on the same dataset. In unsupervised parsing benchmark tests, our method significantly improves performance while effectively reducing variance and bias toward overly simplistic parses. Our research promotes learning more compact, accurate, and consistent explicit grammars, facilitating better interpretability.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3084092541
source Free E- Journals
subjects Ambiguity
Bias
Grammars
Optimization
Parameterization
Sentences
Variance analysis
title Structural Optimization Ambiguity and Simplicity Bias in Unsupervised Neural Grammar Induction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Structural%20Optimization%20Ambiguity%20and%20Simplicity%20Bias%20in%20Unsupervised%20Neural%20Grammar%20Induction&rft.jtitle=arXiv.org&rft.au=Park,%20Jinwook&rft.date=2024-07-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3084092541%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084092541&rft_id=info:pmid/&rfr_iscdi=true