Performance of vision transformer and swin transformer models for lemon quality classification in fruit juice factories

Assessing the quality of agricultural products holds vital significance in enhancing production efficiency and market viability. The adoption of artificial intelligence (AI) has notably surged for this purpose, employing deep learning and machine learning techniques to process and classify agricultu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European food research & technology 2024-09, Vol.250 (9), p.2291-2302
Hauptverfasser: Dümen, Sezer, Kavalcı Yılmaz, Esra, Adem, Kemal, Avaroglu, Erdinç
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2302
container_issue 9
container_start_page 2291
container_title European food research & technology
container_volume 250
creator Dümen, Sezer
Kavalcı Yılmaz, Esra
Adem, Kemal
Avaroglu, Erdinç
description Assessing the quality of agricultural products holds vital significance in enhancing production efficiency and market viability. The adoption of artificial intelligence (AI) has notably surged for this purpose, employing deep learning and machine learning techniques to process and classify agricultural product images, adhering to defined standards. This study focuses on the lemon dataset, encompassing ‘good’ and ‘bad’ quality classes, initiate by augmenting data through rescaling, random zoom, flip, and rotation methods. Subsequently, employing eight diverse deep learning approaches and two transformer methods for classification, the study culminated in the ViT method achieving an unprecedented 99.84% accuracy, 99.95% recall, and 99.66% precision, marking the highest accuracy documented. These findings strongly advocate for the efficacy of the ViT method in successfully classifying lemon quality, spotlighting its potential impact on agricultural quality assessment.
doi_str_mv 10.1007/s00217-024-04537-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3084092143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084092143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-22068fda1e7c0ad616fb8e20fac81aaee0d962535d73be8539900c823010e94d3</originalsourceid><addsrcrecordid>eNp9kUtLxTAQhYMoqFf_gKuAGzfVSdL0sRTxBYIudB1iOpFc2kYzreK_N9crii5cTWb4zpkwh7EDAccCoD4hACnqAmRZQKlVXegNtiNK1RRSNXrz-13X22yXaAmg20qUO-ztDpOPabCjQx49fw0U4sinZEdazTFxO3ac3sLv4RA77Innjvc4ZMXLbPswvXPXW6Lgg7PTyijLfJrDxJdzyBu8dVNMAWmPbXnbE-5_1QV7uDi_P7sqbm4vr89ObwqnynoqpISq8Z0VWDuwXSUq_9ighOzTCGsRoWsrqZXuavWIjVZtC-AaqUAAtmWnFuxo7fuc4suMNJkhkMO-tyPGmYwS-VpCy3yfBTv8gy7jnMb8O6OgKaFdQZmSa8qlSJTQm-cUBpvejQCzysKsszA5C_OZhdFZpNYiyvD4hOnH-h_VB7lQjlM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084092143</pqid></control><display><type>article</type><title>Performance of vision transformer and swin transformer models for lemon quality classification in fruit juice factories</title><source>SpringerLink</source><creator>Dümen, Sezer ; Kavalcı Yılmaz, Esra ; Adem, Kemal ; Avaroglu, Erdinç</creator><creatorcontrib>Dümen, Sezer ; Kavalcı Yılmaz, Esra ; Adem, Kemal ; Avaroglu, Erdinç</creatorcontrib><description>Assessing the quality of agricultural products holds vital significance in enhancing production efficiency and market viability. The adoption of artificial intelligence (AI) has notably surged for this purpose, employing deep learning and machine learning techniques to process and classify agricultural product images, adhering to defined standards. This study focuses on the lemon dataset, encompassing ‘good’ and ‘bad’ quality classes, initiate by augmenting data through rescaling, random zoom, flip, and rotation methods. Subsequently, employing eight diverse deep learning approaches and two transformer methods for classification, the study culminated in the ViT method achieving an unprecedented 99.84% accuracy, 99.95% recall, and 99.66% precision, marking the highest accuracy documented. These findings strongly advocate for the efficacy of the ViT method in successfully classifying lemon quality, spotlighting its potential impact on agricultural quality assessment.</description><identifier>ISSN: 1438-2377</identifier><identifier>EISSN: 1438-2385</identifier><identifier>DOI: 10.1007/s00217-024-04537-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Agricultural production ; Agricultural products ; Agriculture ; Analytical Chemistry ; Artificial intelligence ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Classification ; Computer engineering ; data collection ; Datasets ; Deep learning ; Discriminant analysis ; Disease ; economic sustainability ; Efficiency ; Food Science ; Forestry ; Fruit juices ; Image enhancement ; Image quality ; Lemons ; Machine learning ; Original Paper ; Quality assessment ; Quality control ; Rescaling ; Success ; vision</subject><ispartof>European food research &amp; technology, 2024-09, Vol.250 (9), p.2291-2302</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c347t-22068fda1e7c0ad616fb8e20fac81aaee0d962535d73be8539900c823010e94d3</cites><orcidid>0000-0002-3752-7354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00217-024-04537-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00217-024-04537-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Dümen, Sezer</creatorcontrib><creatorcontrib>Kavalcı Yılmaz, Esra</creatorcontrib><creatorcontrib>Adem, Kemal</creatorcontrib><creatorcontrib>Avaroglu, Erdinç</creatorcontrib><title>Performance of vision transformer and swin transformer models for lemon quality classification in fruit juice factories</title><title>European food research &amp; technology</title><addtitle>Eur Food Res Technol</addtitle><description>Assessing the quality of agricultural products holds vital significance in enhancing production efficiency and market viability. The adoption of artificial intelligence (AI) has notably surged for this purpose, employing deep learning and machine learning techniques to process and classify agricultural product images, adhering to defined standards. This study focuses on the lemon dataset, encompassing ‘good’ and ‘bad’ quality classes, initiate by augmenting data through rescaling, random zoom, flip, and rotation methods. Subsequently, employing eight diverse deep learning approaches and two transformer methods for classification, the study culminated in the ViT method achieving an unprecedented 99.84% accuracy, 99.95% recall, and 99.66% precision, marking the highest accuracy documented. These findings strongly advocate for the efficacy of the ViT method in successfully classifying lemon quality, spotlighting its potential impact on agricultural quality assessment.</description><subject>Accuracy</subject><subject>Agricultural production</subject><subject>Agricultural products</subject><subject>Agriculture</subject><subject>Analytical Chemistry</subject><subject>Artificial intelligence</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Classification</subject><subject>Computer engineering</subject><subject>data collection</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Discriminant analysis</subject><subject>Disease</subject><subject>economic sustainability</subject><subject>Efficiency</subject><subject>Food Science</subject><subject>Forestry</subject><subject>Fruit juices</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Lemons</subject><subject>Machine learning</subject><subject>Original Paper</subject><subject>Quality assessment</subject><subject>Quality control</subject><subject>Rescaling</subject><subject>Success</subject><subject>vision</subject><issn>1438-2377</issn><issn>1438-2385</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUtLxTAQhYMoqFf_gKuAGzfVSdL0sRTxBYIudB1iOpFc2kYzreK_N9crii5cTWb4zpkwh7EDAccCoD4hACnqAmRZQKlVXegNtiNK1RRSNXrz-13X22yXaAmg20qUO-ztDpOPabCjQx49fw0U4sinZEdazTFxO3ac3sLv4RA77Innjvc4ZMXLbPswvXPXW6Lgg7PTyijLfJrDxJdzyBu8dVNMAWmPbXnbE-5_1QV7uDi_P7sqbm4vr89ObwqnynoqpISq8Z0VWDuwXSUq_9ighOzTCGsRoWsrqZXuavWIjVZtC-AaqUAAtmWnFuxo7fuc4suMNJkhkMO-tyPGmYwS-VpCy3yfBTv8gy7jnMb8O6OgKaFdQZmSa8qlSJTQm-cUBpvejQCzysKsszA5C_OZhdFZpNYiyvD4hOnH-h_VB7lQjlM</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Dümen, Sezer</creator><creator>Kavalcı Yılmaz, Esra</creator><creator>Adem, Kemal</creator><creator>Avaroglu, Erdinç</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QR</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3752-7354</orcidid></search><sort><creationdate>20240901</creationdate><title>Performance of vision transformer and swin transformer models for lemon quality classification in fruit juice factories</title><author>Dümen, Sezer ; Kavalcı Yılmaz, Esra ; Adem, Kemal ; Avaroglu, Erdinç</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-22068fda1e7c0ad616fb8e20fac81aaee0d962535d73be8539900c823010e94d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Agricultural production</topic><topic>Agricultural products</topic><topic>Agriculture</topic><topic>Analytical Chemistry</topic><topic>Artificial intelligence</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Classification</topic><topic>Computer engineering</topic><topic>data collection</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Discriminant analysis</topic><topic>Disease</topic><topic>economic sustainability</topic><topic>Efficiency</topic><topic>Food Science</topic><topic>Forestry</topic><topic>Fruit juices</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Lemons</topic><topic>Machine learning</topic><topic>Original Paper</topic><topic>Quality assessment</topic><topic>Quality control</topic><topic>Rescaling</topic><topic>Success</topic><topic>vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dümen, Sezer</creatorcontrib><creatorcontrib>Kavalcı Yılmaz, Esra</creatorcontrib><creatorcontrib>Adem, Kemal</creatorcontrib><creatorcontrib>Avaroglu, Erdinç</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>European food research &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dümen, Sezer</au><au>Kavalcı Yılmaz, Esra</au><au>Adem, Kemal</au><au>Avaroglu, Erdinç</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of vision transformer and swin transformer models for lemon quality classification in fruit juice factories</atitle><jtitle>European food research &amp; technology</jtitle><stitle>Eur Food Res Technol</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>250</volume><issue>9</issue><spage>2291</spage><epage>2302</epage><pages>2291-2302</pages><issn>1438-2377</issn><eissn>1438-2385</eissn><abstract>Assessing the quality of agricultural products holds vital significance in enhancing production efficiency and market viability. The adoption of artificial intelligence (AI) has notably surged for this purpose, employing deep learning and machine learning techniques to process and classify agricultural product images, adhering to defined standards. This study focuses on the lemon dataset, encompassing ‘good’ and ‘bad’ quality classes, initiate by augmenting data through rescaling, random zoom, flip, and rotation methods. Subsequently, employing eight diverse deep learning approaches and two transformer methods for classification, the study culminated in the ViT method achieving an unprecedented 99.84% accuracy, 99.95% recall, and 99.66% precision, marking the highest accuracy documented. These findings strongly advocate for the efficacy of the ViT method in successfully classifying lemon quality, spotlighting its potential impact on agricultural quality assessment.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00217-024-04537-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3752-7354</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1438-2377
ispartof European food research & technology, 2024-09, Vol.250 (9), p.2291-2302
issn 1438-2377
1438-2385
language eng
recordid cdi_proquest_journals_3084092143
source SpringerLink
subjects Accuracy
Agricultural production
Agricultural products
Agriculture
Analytical Chemistry
Artificial intelligence
Biotechnology
Chemistry
Chemistry and Materials Science
Classification
Computer engineering
data collection
Datasets
Deep learning
Discriminant analysis
Disease
economic sustainability
Efficiency
Food Science
Forestry
Fruit juices
Image enhancement
Image quality
Lemons
Machine learning
Original Paper
Quality assessment
Quality control
Rescaling
Success
vision
title Performance of vision transformer and swin transformer models for lemon quality classification in fruit juice factories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20vision%20transformer%20and%20swin%20transformer%20models%20for%20lemon%20quality%20classification%20in%20fruit%20juice%20factories&rft.jtitle=European%20food%20research%20&%20technology&rft.au=D%C3%BCmen,%20Sezer&rft.date=2024-09-01&rft.volume=250&rft.issue=9&rft.spage=2291&rft.epage=2302&rft.pages=2291-2302&rft.issn=1438-2377&rft.eissn=1438-2385&rft_id=info:doi/10.1007/s00217-024-04537-5&rft_dat=%3Cproquest_cross%3E3084092143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084092143&rft_id=info:pmid/&rfr_iscdi=true