Helmholtz Plane Reconfiguration Enables Robust Zinc Metal Anode in Aqueous Zinc‐Ion Batteries
Aqueous zinc‐ion batteries are promising for next‐generation energy storage systems. However, the zinc dendrite growth, corrosion, and hydrogen evolution reaction at the electrochemical interface severely impede their further development. Herein, a Zn2+‐rich and H2O‐poor Helmholtz plane is construct...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-07, Vol.34 (30), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 30 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Wu, Tingqing Hu, Chao Zhang, Qi Yang, Zefang Jin, Guanhua Li, Yixin Tang, Yougen Li, Huanhuan Wang, Haiyan |
description | Aqueous zinc‐ion batteries are promising for next‐generation energy storage systems. However, the zinc dendrite growth, corrosion, and hydrogen evolution reaction at the electrochemical interface severely impede their further development. Herein, a Zn2+‐rich and H2O‐poor Helmholtz plane is constructed to regulate the electrochemical interface between the zinc anode and the electrolyte. Electrochemical and in situ spectroscopy characterizations reveal that the designed electric double layer with abundant Zn2+ coordination sites and less H2O content can facilitate rapid electron transfer, homogenize Zn2+ deposition, and alleviate the side reactions induced by active H2O. Benefiting from the high reversibility and stability of zinc anode, the Zn||Zn symmetric cell can be cycled over 1000 h at 1 mA cm−2 and the Zn||NH4V4O10 full cell can maintain a capacity of 85.23% for 1000 cycles at 3 A g−1. This work aims at Helmholtz plane reconfiguration and provides a realizable strategy in interface construction for other similar systems.
A Zn2+‐rich and H2O‐poor Helmholtz plane designed by 3‐mercapto‐1‐propanesulfonate (MPS) facilitates rapid electron transfer, homogenizes Zn2+ deposition, and alleviates the side reactions induced by active H2O, further enables robust zinc metal anode in cycling. Therefore, the Zn||Zn symmetric cell and Zn||NH4V4O10 full cell can exhibit excellent electrochemical performance in the electrolyte with MPS. |
doi_str_mv | 10.1002/adfm.202315716 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3083823009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083823009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-3bce9c5b52148fe7804e590051e316bfd6feb6cc789d46f8889cd3763eabd9923</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXrclkfpJlra0ttChFQdyETOZGp0yTmswgdeUj-Iw-iVMrdenqHrjnu_dwEDqnpE8JiS5VYVb9iESMJhlND1CHpjTtMRLxw72mj8foJIQlITTLWNxBcgLV6sVV9Tu-q5QFvADtrCmfG6_q0lk8siqvIOCFy5tQ46fSajyHWlV4YF0BuLR48NqAa8LP7uvjc9pSV6quwZcQTtGRUVWAs9_ZRQ_j0f1w0pvd3kyHg1lPM5q1yXINQid5EtGYG8g4iSERhCQUGE1zU6QG8lTrjIsiTg3nXOiCZSkDlRdCRKyLLnZ31961cUItl67xtn0pGeGMR4wQ0br6O5f2LgQPRq59uVJ-IymR2xLltkS5L7EFxA54KyvY_OOWg-vx_I_9Bkcvdyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083823009</pqid></control><display><type>article</type><title>Helmholtz Plane Reconfiguration Enables Robust Zinc Metal Anode in Aqueous Zinc‐Ion Batteries</title><source>Wiley Online Library All Journals</source><creator>Wu, Tingqing ; Hu, Chao ; Zhang, Qi ; Yang, Zefang ; Jin, Guanhua ; Li, Yixin ; Tang, Yougen ; Li, Huanhuan ; Wang, Haiyan</creator><creatorcontrib>Wu, Tingqing ; Hu, Chao ; Zhang, Qi ; Yang, Zefang ; Jin, Guanhua ; Li, Yixin ; Tang, Yougen ; Li, Huanhuan ; Wang, Haiyan</creatorcontrib><description>Aqueous zinc‐ion batteries are promising for next‐generation energy storage systems. However, the zinc dendrite growth, corrosion, and hydrogen evolution reaction at the electrochemical interface severely impede their further development. Herein, a Zn2+‐rich and H2O‐poor Helmholtz plane is constructed to regulate the electrochemical interface between the zinc anode and the electrolyte. Electrochemical and in situ spectroscopy characterizations reveal that the designed electric double layer with abundant Zn2+ coordination sites and less H2O content can facilitate rapid electron transfer, homogenize Zn2+ deposition, and alleviate the side reactions induced by active H2O. Benefiting from the high reversibility and stability of zinc anode, the Zn||Zn symmetric cell can be cycled over 1000 h at 1 mA cm−2 and the Zn||NH4V4O10 full cell can maintain a capacity of 85.23% for 1000 cycles at 3 A g−1. This work aims at Helmholtz plane reconfiguration and provides a realizable strategy in interface construction for other similar systems.
A Zn2+‐rich and H2O‐poor Helmholtz plane designed by 3‐mercapto‐1‐propanesulfonate (MPS) facilitates rapid electron transfer, homogenizes Zn2+ deposition, and alleviates the side reactions induced by active H2O, further enables robust zinc metal anode in cycling. Therefore, the Zn||Zn symmetric cell and Zn||NH4V4O10 full cell can exhibit excellent electrochemical performance in the electrolyte with MPS.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202315716</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>aqueous zinc‐ion batteries ; Chemical reactions ; Electric double layer ; Electron transfer ; Energy storage ; Helmholtz plane reconfiguration ; Hydrogen evolution reactions ; interface stability ; Reconfiguration ; Storage systems ; Zinc ; zinc anode</subject><ispartof>Advanced functional materials, 2024-07, Vol.34 (30), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-3bce9c5b52148fe7804e590051e316bfd6feb6cc789d46f8889cd3763eabd9923</citedby><cites>FETCH-LOGICAL-c3176-3bce9c5b52148fe7804e590051e316bfd6feb6cc789d46f8889cd3763eabd9923</cites><orcidid>0000-0003-4206-0215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202315716$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202315716$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wu, Tingqing</creatorcontrib><creatorcontrib>Hu, Chao</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Yang, Zefang</creatorcontrib><creatorcontrib>Jin, Guanhua</creatorcontrib><creatorcontrib>Li, Yixin</creatorcontrib><creatorcontrib>Tang, Yougen</creatorcontrib><creatorcontrib>Li, Huanhuan</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><title>Helmholtz Plane Reconfiguration Enables Robust Zinc Metal Anode in Aqueous Zinc‐Ion Batteries</title><title>Advanced functional materials</title><description>Aqueous zinc‐ion batteries are promising for next‐generation energy storage systems. However, the zinc dendrite growth, corrosion, and hydrogen evolution reaction at the electrochemical interface severely impede their further development. Herein, a Zn2+‐rich and H2O‐poor Helmholtz plane is constructed to regulate the electrochemical interface between the zinc anode and the electrolyte. Electrochemical and in situ spectroscopy characterizations reveal that the designed electric double layer with abundant Zn2+ coordination sites and less H2O content can facilitate rapid electron transfer, homogenize Zn2+ deposition, and alleviate the side reactions induced by active H2O. Benefiting from the high reversibility and stability of zinc anode, the Zn||Zn symmetric cell can be cycled over 1000 h at 1 mA cm−2 and the Zn||NH4V4O10 full cell can maintain a capacity of 85.23% for 1000 cycles at 3 A g−1. This work aims at Helmholtz plane reconfiguration and provides a realizable strategy in interface construction for other similar systems.
A Zn2+‐rich and H2O‐poor Helmholtz plane designed by 3‐mercapto‐1‐propanesulfonate (MPS) facilitates rapid electron transfer, homogenizes Zn2+ deposition, and alleviates the side reactions induced by active H2O, further enables robust zinc metal anode in cycling. Therefore, the Zn||Zn symmetric cell and Zn||NH4V4O10 full cell can exhibit excellent electrochemical performance in the electrolyte with MPS.</description><subject>aqueous zinc‐ion batteries</subject><subject>Chemical reactions</subject><subject>Electric double layer</subject><subject>Electron transfer</subject><subject>Energy storage</subject><subject>Helmholtz plane reconfiguration</subject><subject>Hydrogen evolution reactions</subject><subject>interface stability</subject><subject>Reconfiguration</subject><subject>Storage systems</subject><subject>Zinc</subject><subject>zinc anode</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wHXrclkfpJlra0ttChFQdyETOZGp0yTmswgdeUj-Iw-iVMrdenqHrjnu_dwEDqnpE8JiS5VYVb9iESMJhlND1CHpjTtMRLxw72mj8foJIQlITTLWNxBcgLV6sVV9Tu-q5QFvADtrCmfG6_q0lk8siqvIOCFy5tQ46fSajyHWlV4YF0BuLR48NqAa8LP7uvjc9pSV6quwZcQTtGRUVWAs9_ZRQ_j0f1w0pvd3kyHg1lPM5q1yXINQid5EtGYG8g4iSERhCQUGE1zU6QG8lTrjIsiTg3nXOiCZSkDlRdCRKyLLnZ31961cUItl67xtn0pGeGMR4wQ0br6O5f2LgQPRq59uVJ-IymR2xLltkS5L7EFxA54KyvY_OOWg-vx_I_9Bkcvdyk</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Wu, Tingqing</creator><creator>Hu, Chao</creator><creator>Zhang, Qi</creator><creator>Yang, Zefang</creator><creator>Jin, Guanhua</creator><creator>Li, Yixin</creator><creator>Tang, Yougen</creator><creator>Li, Huanhuan</creator><creator>Wang, Haiyan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4206-0215</orcidid></search><sort><creationdate>20240701</creationdate><title>Helmholtz Plane Reconfiguration Enables Robust Zinc Metal Anode in Aqueous Zinc‐Ion Batteries</title><author>Wu, Tingqing ; Hu, Chao ; Zhang, Qi ; Yang, Zefang ; Jin, Guanhua ; Li, Yixin ; Tang, Yougen ; Li, Huanhuan ; Wang, Haiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-3bce9c5b52148fe7804e590051e316bfd6feb6cc789d46f8889cd3763eabd9923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aqueous zinc‐ion batteries</topic><topic>Chemical reactions</topic><topic>Electric double layer</topic><topic>Electron transfer</topic><topic>Energy storage</topic><topic>Helmholtz plane reconfiguration</topic><topic>Hydrogen evolution reactions</topic><topic>interface stability</topic><topic>Reconfiguration</topic><topic>Storage systems</topic><topic>Zinc</topic><topic>zinc anode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tingqing</creatorcontrib><creatorcontrib>Hu, Chao</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Yang, Zefang</creatorcontrib><creatorcontrib>Jin, Guanhua</creatorcontrib><creatorcontrib>Li, Yixin</creatorcontrib><creatorcontrib>Tang, Yougen</creatorcontrib><creatorcontrib>Li, Huanhuan</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Tingqing</au><au>Hu, Chao</au><au>Zhang, Qi</au><au>Yang, Zefang</au><au>Jin, Guanhua</au><au>Li, Yixin</au><au>Tang, Yougen</au><au>Li, Huanhuan</au><au>Wang, Haiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Helmholtz Plane Reconfiguration Enables Robust Zinc Metal Anode in Aqueous Zinc‐Ion Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>34</volume><issue>30</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Aqueous zinc‐ion batteries are promising for next‐generation energy storage systems. However, the zinc dendrite growth, corrosion, and hydrogen evolution reaction at the electrochemical interface severely impede their further development. Herein, a Zn2+‐rich and H2O‐poor Helmholtz plane is constructed to regulate the electrochemical interface between the zinc anode and the electrolyte. Electrochemical and in situ spectroscopy characterizations reveal that the designed electric double layer with abundant Zn2+ coordination sites and less H2O content can facilitate rapid electron transfer, homogenize Zn2+ deposition, and alleviate the side reactions induced by active H2O. Benefiting from the high reversibility and stability of zinc anode, the Zn||Zn symmetric cell can be cycled over 1000 h at 1 mA cm−2 and the Zn||NH4V4O10 full cell can maintain a capacity of 85.23% for 1000 cycles at 3 A g−1. This work aims at Helmholtz plane reconfiguration and provides a realizable strategy in interface construction for other similar systems.
A Zn2+‐rich and H2O‐poor Helmholtz plane designed by 3‐mercapto‐1‐propanesulfonate (MPS) facilitates rapid electron transfer, homogenizes Zn2+ deposition, and alleviates the side reactions induced by active H2O, further enables robust zinc metal anode in cycling. Therefore, the Zn||Zn symmetric cell and Zn||NH4V4O10 full cell can exhibit excellent electrochemical performance in the electrolyte with MPS.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202315716</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4206-0215</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-07, Vol.34 (30), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3083823009 |
source | Wiley Online Library All Journals |
subjects | aqueous zinc‐ion batteries Chemical reactions Electric double layer Electron transfer Energy storage Helmholtz plane reconfiguration Hydrogen evolution reactions interface stability Reconfiguration Storage systems Zinc zinc anode |
title | Helmholtz Plane Reconfiguration Enables Robust Zinc Metal Anode in Aqueous Zinc‐Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Helmholtz%20Plane%20Reconfiguration%20Enables%20Robust%20Zinc%20Metal%20Anode%20in%20Aqueous%20Zinc%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Wu,%20Tingqing&rft.date=2024-07-01&rft.volume=34&rft.issue=30&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202315716&rft_dat=%3Cproquest_cross%3E3083823009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083823009&rft_id=info:pmid/&rfr_iscdi=true |