Helmholtz Plane Reconfiguration Enables Robust Zinc Metal Anode in Aqueous Zinc‐Ion Batteries

Aqueous zinc‐ion batteries are promising for next‐generation energy storage systems. However, the zinc dendrite growth, corrosion, and hydrogen evolution reaction at the electrochemical interface severely impede their further development. Herein, a Zn2+‐rich and H2O‐poor Helmholtz plane is construct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-07, Vol.34 (30), p.n/a
Hauptverfasser: Wu, Tingqing, Hu, Chao, Zhang, Qi, Yang, Zefang, Jin, Guanhua, Li, Yixin, Tang, Yougen, Li, Huanhuan, Wang, Haiyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 30
container_start_page
container_title Advanced functional materials
container_volume 34
creator Wu, Tingqing
Hu, Chao
Zhang, Qi
Yang, Zefang
Jin, Guanhua
Li, Yixin
Tang, Yougen
Li, Huanhuan
Wang, Haiyan
description Aqueous zinc‐ion batteries are promising for next‐generation energy storage systems. However, the zinc dendrite growth, corrosion, and hydrogen evolution reaction at the electrochemical interface severely impede their further development. Herein, a Zn2+‐rich and H2O‐poor Helmholtz plane is constructed to regulate the electrochemical interface between the zinc anode and the electrolyte. Electrochemical and in situ spectroscopy characterizations reveal that the designed electric double layer with abundant Zn2+ coordination sites and less H2O content can facilitate rapid electron transfer, homogenize Zn2+ deposition, and alleviate the side reactions induced by active H2O. Benefiting from the high reversibility and stability of zinc anode, the Zn||Zn symmetric cell can be cycled over 1000 h at 1 mA cm−2 and the Zn||NH4V4O10 full cell can maintain a capacity of 85.23% for 1000 cycles at 3 A g−1. This work aims at Helmholtz plane reconfiguration and provides a realizable strategy in interface construction for other similar systems. A Zn2+‐rich and H2O‐poor Helmholtz plane designed by 3‐mercapto‐1‐propanesulfonate (MPS) facilitates rapid electron transfer, homogenizes Zn2+ deposition, and alleviates the side reactions induced by active H2O, further enables robust zinc metal anode in cycling. Therefore, the Zn||Zn symmetric cell and Zn||NH4V4O10 full cell can exhibit excellent electrochemical performance in the electrolyte with MPS.
doi_str_mv 10.1002/adfm.202315716
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3083823009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083823009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-3bce9c5b52148fe7804e590051e316bfd6feb6cc789d46f8889cd3763eabd9923</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXrclkfpJlra0ttChFQdyETOZGp0yTmswgdeUj-Iw-iVMrdenqHrjnu_dwEDqnpE8JiS5VYVb9iESMJhlND1CHpjTtMRLxw72mj8foJIQlITTLWNxBcgLV6sVV9Tu-q5QFvADtrCmfG6_q0lk8siqvIOCFy5tQ46fSajyHWlV4YF0BuLR48NqAa8LP7uvjc9pSV6quwZcQTtGRUVWAs9_ZRQ_j0f1w0pvd3kyHg1lPM5q1yXINQid5EtGYG8g4iSERhCQUGE1zU6QG8lTrjIsiTg3nXOiCZSkDlRdCRKyLLnZ31961cUItl67xtn0pGeGMR4wQ0br6O5f2LgQPRq59uVJ-IymR2xLltkS5L7EFxA54KyvY_OOWg-vx_I_9Bkcvdyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083823009</pqid></control><display><type>article</type><title>Helmholtz Plane Reconfiguration Enables Robust Zinc Metal Anode in Aqueous Zinc‐Ion Batteries</title><source>Wiley Online Library All Journals</source><creator>Wu, Tingqing ; Hu, Chao ; Zhang, Qi ; Yang, Zefang ; Jin, Guanhua ; Li, Yixin ; Tang, Yougen ; Li, Huanhuan ; Wang, Haiyan</creator><creatorcontrib>Wu, Tingqing ; Hu, Chao ; Zhang, Qi ; Yang, Zefang ; Jin, Guanhua ; Li, Yixin ; Tang, Yougen ; Li, Huanhuan ; Wang, Haiyan</creatorcontrib><description>Aqueous zinc‐ion batteries are promising for next‐generation energy storage systems. However, the zinc dendrite growth, corrosion, and hydrogen evolution reaction at the electrochemical interface severely impede their further development. Herein, a Zn2+‐rich and H2O‐poor Helmholtz plane is constructed to regulate the electrochemical interface between the zinc anode and the electrolyte. Electrochemical and in situ spectroscopy characterizations reveal that the designed electric double layer with abundant Zn2+ coordination sites and less H2O content can facilitate rapid electron transfer, homogenize Zn2+ deposition, and alleviate the side reactions induced by active H2O. Benefiting from the high reversibility and stability of zinc anode, the Zn||Zn symmetric cell can be cycled over 1000 h at 1 mA cm−2 and the Zn||NH4V4O10 full cell can maintain a capacity of 85.23% for 1000 cycles at 3 A g−1. This work aims at Helmholtz plane reconfiguration and provides a realizable strategy in interface construction for other similar systems. A Zn2+‐rich and H2O‐poor Helmholtz plane designed by 3‐mercapto‐1‐propanesulfonate (MPS) facilitates rapid electron transfer, homogenizes Zn2+ deposition, and alleviates the side reactions induced by active H2O, further enables robust zinc metal anode in cycling. Therefore, the Zn||Zn symmetric cell and Zn||NH4V4O10 full cell can exhibit excellent electrochemical performance in the electrolyte with MPS.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202315716</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>aqueous zinc‐ion batteries ; Chemical reactions ; Electric double layer ; Electron transfer ; Energy storage ; Helmholtz plane reconfiguration ; Hydrogen evolution reactions ; interface stability ; Reconfiguration ; Storage systems ; Zinc ; zinc anode</subject><ispartof>Advanced functional materials, 2024-07, Vol.34 (30), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-3bce9c5b52148fe7804e590051e316bfd6feb6cc789d46f8889cd3763eabd9923</citedby><cites>FETCH-LOGICAL-c3176-3bce9c5b52148fe7804e590051e316bfd6feb6cc789d46f8889cd3763eabd9923</cites><orcidid>0000-0003-4206-0215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202315716$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202315716$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wu, Tingqing</creatorcontrib><creatorcontrib>Hu, Chao</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Yang, Zefang</creatorcontrib><creatorcontrib>Jin, Guanhua</creatorcontrib><creatorcontrib>Li, Yixin</creatorcontrib><creatorcontrib>Tang, Yougen</creatorcontrib><creatorcontrib>Li, Huanhuan</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><title>Helmholtz Plane Reconfiguration Enables Robust Zinc Metal Anode in Aqueous Zinc‐Ion Batteries</title><title>Advanced functional materials</title><description>Aqueous zinc‐ion batteries are promising for next‐generation energy storage systems. However, the zinc dendrite growth, corrosion, and hydrogen evolution reaction at the electrochemical interface severely impede their further development. Herein, a Zn2+‐rich and H2O‐poor Helmholtz plane is constructed to regulate the electrochemical interface between the zinc anode and the electrolyte. Electrochemical and in situ spectroscopy characterizations reveal that the designed electric double layer with abundant Zn2+ coordination sites and less H2O content can facilitate rapid electron transfer, homogenize Zn2+ deposition, and alleviate the side reactions induced by active H2O. Benefiting from the high reversibility and stability of zinc anode, the Zn||Zn symmetric cell can be cycled over 1000 h at 1 mA cm−2 and the Zn||NH4V4O10 full cell can maintain a capacity of 85.23% for 1000 cycles at 3 A g−1. This work aims at Helmholtz plane reconfiguration and provides a realizable strategy in interface construction for other similar systems. A Zn2+‐rich and H2O‐poor Helmholtz plane designed by 3‐mercapto‐1‐propanesulfonate (MPS) facilitates rapid electron transfer, homogenizes Zn2+ deposition, and alleviates the side reactions induced by active H2O, further enables robust zinc metal anode in cycling. Therefore, the Zn||Zn symmetric cell and Zn||NH4V4O10 full cell can exhibit excellent electrochemical performance in the electrolyte with MPS.</description><subject>aqueous zinc‐ion batteries</subject><subject>Chemical reactions</subject><subject>Electric double layer</subject><subject>Electron transfer</subject><subject>Energy storage</subject><subject>Helmholtz plane reconfiguration</subject><subject>Hydrogen evolution reactions</subject><subject>interface stability</subject><subject>Reconfiguration</subject><subject>Storage systems</subject><subject>Zinc</subject><subject>zinc anode</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wHXrclkfpJlra0ttChFQdyETOZGp0yTmswgdeUj-Iw-iVMrdenqHrjnu_dwEDqnpE8JiS5VYVb9iESMJhlND1CHpjTtMRLxw72mj8foJIQlITTLWNxBcgLV6sVV9Tu-q5QFvADtrCmfG6_q0lk8siqvIOCFy5tQ46fSajyHWlV4YF0BuLR48NqAa8LP7uvjc9pSV6quwZcQTtGRUVWAs9_ZRQ_j0f1w0pvd3kyHg1lPM5q1yXINQid5EtGYG8g4iSERhCQUGE1zU6QG8lTrjIsiTg3nXOiCZSkDlRdCRKyLLnZ31961cUItl67xtn0pGeGMR4wQ0br6O5f2LgQPRq59uVJ-IymR2xLltkS5L7EFxA54KyvY_OOWg-vx_I_9Bkcvdyk</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Wu, Tingqing</creator><creator>Hu, Chao</creator><creator>Zhang, Qi</creator><creator>Yang, Zefang</creator><creator>Jin, Guanhua</creator><creator>Li, Yixin</creator><creator>Tang, Yougen</creator><creator>Li, Huanhuan</creator><creator>Wang, Haiyan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4206-0215</orcidid></search><sort><creationdate>20240701</creationdate><title>Helmholtz Plane Reconfiguration Enables Robust Zinc Metal Anode in Aqueous Zinc‐Ion Batteries</title><author>Wu, Tingqing ; Hu, Chao ; Zhang, Qi ; Yang, Zefang ; Jin, Guanhua ; Li, Yixin ; Tang, Yougen ; Li, Huanhuan ; Wang, Haiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-3bce9c5b52148fe7804e590051e316bfd6feb6cc789d46f8889cd3763eabd9923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aqueous zinc‐ion batteries</topic><topic>Chemical reactions</topic><topic>Electric double layer</topic><topic>Electron transfer</topic><topic>Energy storage</topic><topic>Helmholtz plane reconfiguration</topic><topic>Hydrogen evolution reactions</topic><topic>interface stability</topic><topic>Reconfiguration</topic><topic>Storage systems</topic><topic>Zinc</topic><topic>zinc anode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tingqing</creatorcontrib><creatorcontrib>Hu, Chao</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Yang, Zefang</creatorcontrib><creatorcontrib>Jin, Guanhua</creatorcontrib><creatorcontrib>Li, Yixin</creatorcontrib><creatorcontrib>Tang, Yougen</creatorcontrib><creatorcontrib>Li, Huanhuan</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Tingqing</au><au>Hu, Chao</au><au>Zhang, Qi</au><au>Yang, Zefang</au><au>Jin, Guanhua</au><au>Li, Yixin</au><au>Tang, Yougen</au><au>Li, Huanhuan</au><au>Wang, Haiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Helmholtz Plane Reconfiguration Enables Robust Zinc Metal Anode in Aqueous Zinc‐Ion Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>34</volume><issue>30</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Aqueous zinc‐ion batteries are promising for next‐generation energy storage systems. However, the zinc dendrite growth, corrosion, and hydrogen evolution reaction at the electrochemical interface severely impede their further development. Herein, a Zn2+‐rich and H2O‐poor Helmholtz plane is constructed to regulate the electrochemical interface between the zinc anode and the electrolyte. Electrochemical and in situ spectroscopy characterizations reveal that the designed electric double layer with abundant Zn2+ coordination sites and less H2O content can facilitate rapid electron transfer, homogenize Zn2+ deposition, and alleviate the side reactions induced by active H2O. Benefiting from the high reversibility and stability of zinc anode, the Zn||Zn symmetric cell can be cycled over 1000 h at 1 mA cm−2 and the Zn||NH4V4O10 full cell can maintain a capacity of 85.23% for 1000 cycles at 3 A g−1. This work aims at Helmholtz plane reconfiguration and provides a realizable strategy in interface construction for other similar systems. A Zn2+‐rich and H2O‐poor Helmholtz plane designed by 3‐mercapto‐1‐propanesulfonate (MPS) facilitates rapid electron transfer, homogenizes Zn2+ deposition, and alleviates the side reactions induced by active H2O, further enables robust zinc metal anode in cycling. Therefore, the Zn||Zn symmetric cell and Zn||NH4V4O10 full cell can exhibit excellent electrochemical performance in the electrolyte with MPS.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202315716</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4206-0215</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-07, Vol.34 (30), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3083823009
source Wiley Online Library All Journals
subjects aqueous zinc‐ion batteries
Chemical reactions
Electric double layer
Electron transfer
Energy storage
Helmholtz plane reconfiguration
Hydrogen evolution reactions
interface stability
Reconfiguration
Storage systems
Zinc
zinc anode
title Helmholtz Plane Reconfiguration Enables Robust Zinc Metal Anode in Aqueous Zinc‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Helmholtz%20Plane%20Reconfiguration%20Enables%20Robust%20Zinc%20Metal%20Anode%20in%20Aqueous%20Zinc%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Wu,%20Tingqing&rft.date=2024-07-01&rft.volume=34&rft.issue=30&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202315716&rft_dat=%3Cproquest_cross%3E3083823009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083823009&rft_id=info:pmid/&rfr_iscdi=true