Self-training Room Layout Estimation via Geometry-aware Ray-casting
In this paper, we introduce a novel geometry-aware self-training framework for room layout estimation models on unseen scenes with unlabeled data. Our approach utilizes a ray-casting formulation to aggregate multiple estimates from different viewing positions, enabling the computation of reliable ps...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bolivar Solarte Chin-Hsuan Wu Jin-Cheng, Jhang Lee, Jonathan Tsai, Yi-Hsuan Sun, Min |
description | In this paper, we introduce a novel geometry-aware self-training framework for room layout estimation models on unseen scenes with unlabeled data. Our approach utilizes a ray-casting formulation to aggregate multiple estimates from different viewing positions, enabling the computation of reliable pseudo-labels for self-training. In particular, our ray-casting approach enforces multi-view consistency along all ray directions and prioritizes spatial proximity to the camera view for geometry reasoning. As a result, our geometry-aware pseudo-labels effectively handle complex room geometries and occluded walls without relying on assumptions such as Manhattan World or planar room walls. Evaluation on publicly available datasets, including synthetic and real-world scenarios, demonstrates significant improvements in current state-of-the-art layout models without using any human annotation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3083766620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083766620</sourcerecordid><originalsourceid>FETCH-proquest_journals_30837666203</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScAzGxafdSdXCq7uUiaUlpcjU_St_eDj6A0xnOtyKZkPLAqqMQG5KHMHLOhSpFUciM1Dc99Sx6MM64gbaIll5hxhRpE6KxEA06-jZAzxqtjn5m8AGvaQsze8BC3LAj6x6moPNft2R_au71hT09vpIOsRsxebesTvJKlkopweV_6gv7Jzow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083766620</pqid></control><display><type>article</type><title>Self-training Room Layout Estimation via Geometry-aware Ray-casting</title><source>Free E- Journals</source><creator>Bolivar Solarte ; Chin-Hsuan Wu ; Jin-Cheng, Jhang ; Lee, Jonathan ; Tsai, Yi-Hsuan ; Sun, Min</creator><creatorcontrib>Bolivar Solarte ; Chin-Hsuan Wu ; Jin-Cheng, Jhang ; Lee, Jonathan ; Tsai, Yi-Hsuan ; Sun, Min</creatorcontrib><description>In this paper, we introduce a novel geometry-aware self-training framework for room layout estimation models on unseen scenes with unlabeled data. Our approach utilizes a ray-casting formulation to aggregate multiple estimates from different viewing positions, enabling the computation of reliable pseudo-labels for self-training. In particular, our ray-casting approach enforces multi-view consistency along all ray directions and prioritizes spatial proximity to the camera view for geometry reasoning. As a result, our geometry-aware pseudo-labels effectively handle complex room geometries and occluded walls without relying on assumptions such as Manhattan World or planar room walls. Evaluation on publicly available datasets, including synthetic and real-world scenarios, demonstrates significant improvements in current state-of-the-art layout models without using any human annotation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Labels ; Layouts</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bolivar Solarte</creatorcontrib><creatorcontrib>Chin-Hsuan Wu</creatorcontrib><creatorcontrib>Jin-Cheng, Jhang</creatorcontrib><creatorcontrib>Lee, Jonathan</creatorcontrib><creatorcontrib>Tsai, Yi-Hsuan</creatorcontrib><creatorcontrib>Sun, Min</creatorcontrib><title>Self-training Room Layout Estimation via Geometry-aware Ray-casting</title><title>arXiv.org</title><description>In this paper, we introduce a novel geometry-aware self-training framework for room layout estimation models on unseen scenes with unlabeled data. Our approach utilizes a ray-casting formulation to aggregate multiple estimates from different viewing positions, enabling the computation of reliable pseudo-labels for self-training. In particular, our ray-casting approach enforces multi-view consistency along all ray directions and prioritizes spatial proximity to the camera view for geometry reasoning. As a result, our geometry-aware pseudo-labels effectively handle complex room geometries and occluded walls without relying on assumptions such as Manhattan World or planar room walls. Evaluation on publicly available datasets, including synthetic and real-world scenarios, demonstrates significant improvements in current state-of-the-art layout models without using any human annotation.</description><subject>Annotations</subject><subject>Labels</subject><subject>Layouts</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScAzGxafdSdXCq7uUiaUlpcjU_St_eDj6A0xnOtyKZkPLAqqMQG5KHMHLOhSpFUciM1Dc99Sx6MM64gbaIll5hxhRpE6KxEA06-jZAzxqtjn5m8AGvaQsze8BC3LAj6x6moPNft2R_au71hT09vpIOsRsxebesTvJKlkopweV_6gv7Jzow</recordid><startdate>20240721</startdate><enddate>20240721</enddate><creator>Bolivar Solarte</creator><creator>Chin-Hsuan Wu</creator><creator>Jin-Cheng, Jhang</creator><creator>Lee, Jonathan</creator><creator>Tsai, Yi-Hsuan</creator><creator>Sun, Min</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240721</creationdate><title>Self-training Room Layout Estimation via Geometry-aware Ray-casting</title><author>Bolivar Solarte ; Chin-Hsuan Wu ; Jin-Cheng, Jhang ; Lee, Jonathan ; Tsai, Yi-Hsuan ; Sun, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30837666203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Labels</topic><topic>Layouts</topic><toplevel>online_resources</toplevel><creatorcontrib>Bolivar Solarte</creatorcontrib><creatorcontrib>Chin-Hsuan Wu</creatorcontrib><creatorcontrib>Jin-Cheng, Jhang</creatorcontrib><creatorcontrib>Lee, Jonathan</creatorcontrib><creatorcontrib>Tsai, Yi-Hsuan</creatorcontrib><creatorcontrib>Sun, Min</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolivar Solarte</au><au>Chin-Hsuan Wu</au><au>Jin-Cheng, Jhang</au><au>Lee, Jonathan</au><au>Tsai, Yi-Hsuan</au><au>Sun, Min</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Self-training Room Layout Estimation via Geometry-aware Ray-casting</atitle><jtitle>arXiv.org</jtitle><date>2024-07-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we introduce a novel geometry-aware self-training framework for room layout estimation models on unseen scenes with unlabeled data. Our approach utilizes a ray-casting formulation to aggregate multiple estimates from different viewing positions, enabling the computation of reliable pseudo-labels for self-training. In particular, our ray-casting approach enforces multi-view consistency along all ray directions and prioritizes spatial proximity to the camera view for geometry reasoning. As a result, our geometry-aware pseudo-labels effectively handle complex room geometries and occluded walls without relying on assumptions such as Manhattan World or planar room walls. Evaluation on publicly available datasets, including synthetic and real-world scenarios, demonstrates significant improvements in current state-of-the-art layout models without using any human annotation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3083766620 |
source | Free E- Journals |
subjects | Annotations Labels Layouts |
title | Self-training Room Layout Estimation via Geometry-aware Ray-casting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Self-training%20Room%20Layout%20Estimation%20via%20Geometry-aware%20Ray-casting&rft.jtitle=arXiv.org&rft.au=Bolivar%20Solarte&rft.date=2024-07-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3083766620%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083766620&rft_id=info:pmid/&rfr_iscdi=true |